IT-kurs
Kurs i programvare og applikasjoner
Sør-Trøndelag
Du har valgt: Trondheim
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Trondheim ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 2000 timer 2 750 kr
Med GeT Everything får du tilgang til alle kurs og innholdet fra Autodesk, Adobe, Primavera, Bluebeam, Bentlye, Microsoft, Trimble og McNeel. [+]
GeT Everything NTI tilbyr eLæringkurs av høyeste kvalitet. Uansett hvilket kurs du velger har du tilgang til dem 24/7 i 1 år (365 dager). Med elæringskurs velger du selv ditt tempo i læringen, og om du vil lære gjennom kombinasjon av å se, lese, lytte og teste selv – eller hvorfor ikke en kombinasjon av flere? Det du trenger er en PC, smarttelefon eller nettbrett som har internettilgang   Her er et utvalg av kursene du får tilgang på: Autodesk Adobe Primavera Bluebeam Bentlye Microsof Trimble McNeel NTI  leverer opplæring for å forenkle og effektivisere din arbeidshverdag Vi har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon. Global eTraining har over 25 års erfaring med opplæring, og har solgt millioner av elæringskurs i over 150 land.  PC, smarttelefon eller nettbrett som har internettilgang Pål har gjennomført e-læringskurs Pål hadde ikke anledning til å reise bort en uke for å delta på kurs, da var det forlokkende å gjennomføre kurset som e-læringskurs. Kurset var absolutt verdt pengene. Det var en viktig bekreftelse på at jeg har basiskunnskapene. Jeg lærte mange nye viktige kommandoer for å gjøre operasjoner mer effektivt, fikk også en pekepinn på hvor jeg kan bygge på med kunnskap.Les mer her [-]
Les mer
1 dag 9 500 kr
AZ-1001: Deploy and manage containers using Azure Kubernetes Service [+]
AZ-1001: Deploy and manage containers using Azure Kubernetes Service [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til grunnleggende programmeringsprinsipper som variabler, datatyper, kontrollstrukturer (løkker og beslutninger), matriser (arrays), egendefinerte funksjoner... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: 6 AV 10 øvinger må være godkjent for å kunne gå opp til eksamen. Vurderingsform: En individuell 4-timers nettbasert hjemmeeksamen. Ansvarlig: Svend Andreas Horgen Eksamensdato: 17.12.13 / 20.05.14         Læremål: KUNNSKAPER:Kandidaten:- kan forklare hva et program er- kan redegjøre for grunnleggende byggestener i programmering, så som variabler, kontrollstrukturer, matriser (arrays) og funksjoner- kan analysere en spesiell problemstilling og planlegge hvordan den kan løses generelt med programkode FERDIGHETER:Kandidaten:- kan bruke et .NET-basert utviklingsmiljø i kodeutvikling- kan lage funksjonelle brukergrensesnitt- kan identifisere feil i programkode- kan lage strukturert programkode som løser enkle problemstillinger- kan anvende innebygde funksjoner fra .NET-rammeverket i egen kode GENERELL KOMPETANSE:Kandidaten:- er bevisst på viktigheten av å eliminere feilsituasjoner Innhold:Introduksjon til grunnleggende programmeringsprinsipper som variabler, datatyper, kontrollstrukturer (løkker og beslutninger), matriser (arrays), egendefinerte funksjoner og innebyde funksjoner. Utforme brukergrensesnitt som er fine å se på og enkle å bruke. Feilhåndtering. Strukturere og planlegge koden på en god måte.Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Programmering i Visual Basic 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
Trondheim Og 2 andre steder 2 dager 16 900 kr
22 Sep
22 Sep
20 Oct
Kubernetes [+]
Kubernetes [-]
Les mer
Oslo 2 dager 18 900 kr
06 Nov
06 Nov
MoP® Practitioner [+]
MoP® Practitioner [-]
Les mer
1 dag 9 500 kr
AZ-2003: Deploy cloud-native apps using Azure Container Apps [+]
AZ-2003: Deploy cloud-native apps using Azure Container Apps [-]
Les mer
1 dag 9 500 kr
01 Sep
03 Nov
DP-3007: Train and deploy a machine learning model with Azure Machine Learning [+]
DP-3007: Train and deploy a machine learning model with Azure Machine Learning [-]
Les mer
1 dag 12 500 kr
Google Cloud Fundamentals: Core Infrastructure [+]
Google Cloud Fundamentals: Core Infrastructure [-]
Les mer
Oslo Bergen 5 dager 34 000 kr
11 Aug
01 Sep
08 Sep
CCNA: Implementing and Administering Cisco Solutions [+]
CCNA: Implementing and Administering Cisco Solutions [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Gir en oversikt over grunnleggende objektorientert programdesign og Java-programmering. Begreper innen objektorientering: klasser, objekter, innkapsling mm. Java-syntaks:... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Et utvalg (6) av øvingsoppgavene må være godkjent for å få gå opp til eksamen. Det vil settes nærmere krav til utvalget, - opplysninger om dette gis ved kursstart. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 4 timer. Ansvarlig: Vuokko-Helena Caseiro Eksamensdato: 17.12.13 / 20.05.14         Læremål: Etter å ha gjennomført emnet Programmering i Java skal kandidaten ha følgende samlede læringsutbytter: KUNNSKAPER:Kandidaten:- kan forklare hva et program er- kjenner til enkle prinsipper innen objektorientert programmering- kan forklare hvorfor brukerkommunikasjon og logikk til et program knyttet til det problemet som skal løses, bør legges til ulike klasser FERDIGHETER:Kandidaten:- kan sette opp programmiljø for å utvikle og kjøre Java-program på egen PC- kan lage strukturert og oversiktlig programkode- kan beskrive klasser og kontrollstrukturer ved hjelp av enkle klassediagram og aktivitetsdiagram- kan, med noe hjelp, anvende klasser fra Java API'et GENERELL KOMPETANSEKandidaten:- kan anvende objektorientert tankegang til å analysere og løse enkle problemer Innhold:Gir en oversikt over grunnleggende objektorientert programdesign og Java-programmering. Begreper innen objektorientering: klasser, objekter, innkapsling mm. Java-syntaks: Datatyper, betingelser, valg, løkker, uttrykk. Innlesing og utskrift. Tabeller.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Programmering i Java 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
01 Sep
20 Oct
01 Dec
Dette er kurset for deg som ikke er vant med Excel, men gjerne vil lære, deg som jobber med Excel regneark andre har laget, men ikke helt har oversikten over hva Excel ka... [+]
Kursinnhold Gjennomgang av Excel vinduet Enkle formler Enkel formatering Klipp og lim Kopiering av formler Merking Slette data Fjerne og legge til celler, rader og kolonner Angre Flytting og kopiering Søk og erstatt Autofyll Cellereferanser Låse og gi navn til celler Hva er en funksjon? Funksjonsveiviseren Gjennomgang av de mest brukte funksjonene: Summer, antall, størst, min og gjennomsnitt. Målgruppe Deg som Har begynt i en stilling hvor en er forventet å kunne Excel Er nysgjerrig på hva Excel kan gjøre for deg i din jobb Er nybegynner eller litt øvet Sliter med å skjønne hvordan du kan jobbe mest effektivt i Excel Forkunnskaper Excel: Ingen Øvrig: Er kjent med bruk av PC Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Oslo 2 dager 14 000 kr
14 Aug
14 Aug
MB-300: Microsoft Dynamics 365: Core Finance and Operations [+]
MB-300: Microsoft Dynamics 365: Core Finance and Operations [-]
Les mer