IT-kurs
IT kompetanse
Västra Götalands län
Du har valgt: Göteborg
Nullstill
Filter
Ferdig

-

25 treff ( i Göteborg ) i IT kompetanse
 

Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Oslo 5 dager 30 000 kr
10 Feb
10 Feb
07 Apr
https://www.glasspaper.no/kurs/dp-203-data-engineering-on-microsoft-azure/ [+]
DP-203: Data Engineering on Microsoft Azure [-]
Les mer
Virtuelt klasserom 3 dager 23 650 kr
05 Nov
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual Course The course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams , you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture  This 3-day course is aimed at anyone wishing to attain the ISTQB Advanced Test Automation Engineer qualification. This qualification builds upon the Foundation syllabus and provides essential skills for all those involved in test automation and who want to develop further their expertise in one or more specific areas. Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt A Test Automation Engineer is one who has broad knowledge of testing in general, and an in-depth understanding in the special area of test automation. An in-depth understanding is defined as having sufficient knowledge of test automation theory and practice to be able to influence the direction that an organization and/or project takes when designing, developing and maintaining test automation solutions for functional tests. The modules offered at the Advanced Level Specialist cover a wide range of testing topics.   The course is highly practical addressing the following areas: Introduction and objectives for Test Automation This section provides an introduction to test automation explaining the objectives, advantages, disadvantages and limitations of test automation as well as technical success factors of a test automation project. Preparing for Test Automation Understanding the type of system is vital for determining the most appropriate automation solution and also how we can design systems and testing for more effective automation. This section also looks at how we can evaluate for the most appropriate tools. The generic Test Automation architecture A test automation engineer has the role of designing, developing, implementing, and maintaining test automation solutions. As each solution is developed, similar tasks need to be done, similar questions need to be answered, and similar issues need to be addressed and prioritized. These reoccurring concepts, steps, and approaches in automating testing become the basis of the generic test automation architecture, and this will be discussed in detail during this section Deployment risks and contingencies This section looks at the various risks associated with the deployment of test tools and how to avoid test automation failure. Test Automation reporting and metrics Providing information to stakeholders for them to make informed decisions about the quality of the software is a vital part of testing and this section looks at the various metrics that can be used to monitor test automation and what information should be supplied to the stakeholder and how it should be presented. Transitioning manual testing to an automated environment This section looks at the various criteria to apply to determine the suitability for automation and understanding the factors for transitioning from manual to automation testing Verifying the Test Automation solution To have justified confidence in the information we supply to the stakeholders regarding test automation we must have justified confidence in the test environment and test automation solution supporting the information Continuous improvement This section looks ahead and how we can improve the automation solution making it more effective and efficient The Exam The ISTQB Advanced Test Automation Engineer exam is a 1 hour 30 minute, 40 question multiple-choice exam totaling 75 points. The pass mark is 65% (49 out of 75). It is a pre-requisite that attendees hold the ISTQB Foundation Level certificate. [-]
Les mer
Virtuelt klasserom 2 dager 14 000 kr
In this course, the students will design various data platform technologies into solutions that are in line with business and technical requirements. This can include on-... [+]
The students will also explore how to design data security including data access, data policies and standards. They will also design Azure data solutions which includes the optimization, availability and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Data Platform Architecture Considerations. -Core Principles of Creating Architectures-Design with Security in Mind-Performance and Scalability-Design for availability and recoverability-Design for efficiency and operations-Case Study Module 2: Azure Batch Processing Reference Architectures. -Lambda architectures from a Batch Mode Perspective-Design an Enterprise BI solution in Azure-Automate enterprise BI solutions in Azure-Architect an Enterprise-grade Conversational Bot in Azure Module 3: Azure Real-Time Reference Architectures. -Lambda architectures for a Real-Time Perspective-Lambda architectures for a Real-Time Perspective-Design a stream processing pipeline with Azure Databricks-Create an Azure IoT reference architecture Module 4: Data Platform Security Design Considerations. -Defense in Depth Security Approach-Network Level Protection-Identity Protection-Encryption Usage-Advanced Threat Protection Module 5: Designing for Resiliency and Scale. -Design Backup and Restore strategies-Optimize Network Performance-Design for Optimized Storage and Database Performance-Design for Optimized Storage and Database Performance-Incorporate Disaster Recovery into Architectures-Design Backup and Restore strategies Module 6: Design for Efficiency and Operations. -Maximizing the Efficiency of your Cloud Environment-Use Monitoring and Analytics to Gain Operational Insights-Use Automation to Reduce Effort and Error [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course teaches Solutions Architects how to translate business requirements into secure, scalable, and reliable solutions. Lessons include virtualization, automation,... [+]
Agenda Module 1: Implement VMs for Windows and Linux -Select Virtual Machine Size-Configure High Availability-Implement Azure Dedicated Hosts-Deploy and Configure Scale Sets-Configure Azure Disk Encryption Module 2: Automate Deployment and Configuration of Resources -Azure Resource Manager Templates-Save a Template for a VM-Evaluate Location of New Resources-Configure a Virtual Hard Disk Template-Deploy from a Template-Create and Execute an Automation Runbook Module 3: Implement Virtual Networking -Virtual Network Peering-Implement VNet Peering Module 4: Implement Load Balancing and Network Security -Implement Azure Load Balancer-Implement an Application Gateway-Understand Web Application Firewall-Implement Azure Firewall-Implement Azure Front Door-Implementing Azure Traffice Manager-Implement Network Security Groups and Application Security Grou-Implement Azure Bastion Module 5: Implement Storage Accounts -Storage Accounts-Blob Storage-Storage Security-Managing Storage-Accessing Blobs and Queues using AAD-Configure Azure Storage Firewalls and Virtual Networks Module 6: Implement Azure Active Directory -Overview of Azure Active Directory-Users and Groups-Domains and Custom Domains-Azure AD Identity Protection-Implement Conditional Access-Configure Fraud Alerts for MFA-Implement Bypass Options-Configure Trusted IPs-Configure Guest Users in Azure AD-Manage Multiple Directori Module 7: Implement and Manage Azure Governance -Create Management Groups, Subscriptions, and Resource Groups-Overview of Role-Based Access Control (RBAC)-Role-Based Access Control (RBAC) Roles-Azure AD Access Reviews-Implement and Configure an Azure Policy-Azure Blueprints Module 8: Implement and Manage Hybrid Identities -Install and Configure Azure AD Connect-Configure Password Sync and Password Writeback-Configure Azure AD Connect Health Module 9: Manage Workloads in Azure -Migrate Workloads using Azure Migrate-VMware - Agentless Migration-VMware - Agent-Based Migration-Implement Azure Backup-Azure to Azure Site Recovery-Implement Azure Update Management Module 10: Implement Cloud Infrastructure Monitoring -Azure Infrastructure Security Monitoring-Azure Monitor-Azure Workbooks-Azure Alerts-Log Analytics-Network Watcher-Azure Service Health-Monitor Azure Costs-Azure Application Insights-Unified Monitoring in Azure Module 11: Manage Security for Applications -Azure Key Vault-Azure Managed Identity Module 12: Implement an Application Infrastructure -Create and Configure Azure App Service-Create an App Service Web App for Containers-Create and Configure an App Service Plan-Configure Networking for an App Service-Create and Manage Deployment Slots-Implement Logic Apps-Implement Azure Functions Module 13: Implement Container-Based Applications -Azure Container Instances-Configure Azure Kubernetes Service Module 14: Implement NoSQL Databases -Configure Storage Account Tables-Select Appropriate CosmosDB APIs Module 15: Implement Azure SQL Databases -Configure Azure SQL Database Settings-Implement Azure SQL Database Managed Instances-High-Availability and Azure SQL Database [-]
Les mer
Oslo 2 dager 16 900 kr
Modern Service Oriented Architecture [+]
Modern Service Oriented Architecture [-]
Les mer
1 dag 8 000 kr
This course introduces fundamentals concepts related to artificial intelligence (AI), and the services in Microsoft Azure that can be used to create AI solutions. [+]
COURSE OVERVIEW The course is not designed to teach students to become professional data scientists or software developers, but rather to build awareness of common AI workloads and the ability to identify Azure services to support them. The course is designed as a blended learning experience that combines instructor-led training with online materials on the Microsoft Learn platform (https://azure.com/learn). The hands-on exercises in the course are based on Learn modules, and students are encouraged to use the content on Learn as reference materials to reinforce what they learn in the class and to explore topics in more depth. TARGET AUDIENCE The Azure AI Fundamentals course is designed for anyone interested in learning about the types of solution artificial intelligence (AI) makes possible, and the services on Microsoft Azure that you can use to create them. You don’t need to have any experience of using Microsoft Azure before taking this course, but a basic level of familiarity with computer technology and the Internet is assumed. Some of the concepts covered in the course require a basic understanding of mathematics, such as the ability to interpret charts. The course includes hands-on activities that involve working with data and running code, so a knowledge of fundamental programming principles will be helpful. COURSE OBJECTIVES  After completing this course, you will be able to: Describe Artificial Intelligence workloads and considerations Describe fundamental principles of machine learning on Azure Describe features of computer vision workloads on Azure Describe features of Natural Language Processing (NLP) workloads on Azure Describe features of conversational AI workloads on Azure   COURSE CONTENT Module 1: Introduction to AI In this module, you'll learn about common uses of artificial intelligence (AI), and the different types of workload associated with AI. You'll then explore considerations and principles for responsible AI development. Artificial Intelligence in Azure Responsible AI After completing this module you will be able to Describe Artificial Intelligence workloads and considerations Module 2: Machine Learning Machine learning is the foundation for modern AI solutions. In this module, you'll learn about some fundamental machine learning concepts, and how to use the Azure Machine Learning service to create and publish machine learning models. Introduction to Machine Learning Azure Machine Learning After completing this module you will be able to Describe fundamental principles of machine learning on Azure Module 3: Computer Vision Computer vision is a the area of AI that deals with understanding the world visually, through images, video files, and cameras. In this module you'll explore multiple computer vision techniques and services. Computer Vision Concepts Computer Vision in Azure After completing this module you will be able to Describe features of computer vision workloads on Azure Module 4: Natural Language Processing This module describes scenarios for AI solutions that can process written and spoken language. You'll learn about Azure services that can be used to build solutions that analyze text, recognize and synthesize speech, translate between languages, and interpret commands. After completing this module you will be able to Describe features of Natural Language Processing (NLP) workloads on Azure Module 5: Conversational AI Conversational AI enables users to engage in a dialog with an AI agent, or *bot*, through communication channels such as email, webchat interfaces, social media, and others. This module describes some basic principles for working with bots and gives you an opportunity to create a bot that can respond intelligently to user questions. Conversational AI Concepts Conversational AI in Azure After completing this module you will be able to Describe features of conversational AI workloads on Azure   TEST CERTIFICATION Recommended as preparation for the following exams: Exam AI-900: Microsoft Azure AI Fundamentals. HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
In this course, the students will implement various data platform technologies into solutions that are in line with business and technical requirements including on-premi... [+]
The students will also explore how to implement data security including authentication, authorization, data policies and standards. They will also define and implement data solution monitoring for both the data storage and data processing activities. Finally, they will manage and troubleshoot Azure data solutions which includes the optimization and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Azure for the Data Engineer -Explain the evolving world of data-Survey the services in the Azure Data Platform-Identify the tasks that are performed by a Data Engineer-Describe the use cases for the cloud in a Case Study Module 2: Working with Data Storage. -Choose a data storage approach in Azure-Create an Azure Storage Account-Explain Azure Data Lake storage-Upload data into Azure Data Lake Module 3: Enabling Team Based Data Science with Azure Databricks. -Explain Azure Databricks and Machine Learning Platforms-Describe the Team Data Science Process-Provision Azure Databricks and workspaces-Perform data preparation tasks Module 4: Building Globally Distributed Databases with Cosmos DB. -Create an Azure Cosmos DB database built to scale-Insert and query data in your Azure Cosmos DB database-Provision a .NET Core app for Cosmos DB in Visual Studio Code-Distribute your data globally with Azure Cosmos DB Module 5: Working with Relational Data Stores in the Cloud. -SQL Database and SQL Data Warehouse-Provision an Azure SQL database to store data-Provision and load data into Azure SQL Data Warehouse Module 6: Performing Real-Time Analytics with Stream Analytics. Module 7: Orchestrating Data Movement with Azure Data Factory. -Explain how Azure Data Factory works-Create Linked Services and datasets-Create pipelines and activities-Azure Data Factory pipeline execution and triggers Module 8: Securing Azure Data Platforms. -Configuring Network Security-Configuring Authentication-Configuring Authorization-Auditing Security Module 9: Monitoring and Troubleshooting Data Storage and Processing. -Data Engineering troubleshooting approach-Azure Monitoring Capabilities-Troubleshoot common data issues-Troubleshoot common data processing issues Module 10: Integrating and Optimizing Data Platforms. -Integrating data platforms-Optimizing data stores-Optimize streaming data-Manage disaster recovery [-]
Les mer
Oslo 5 dager 30 000 kr
18 Nov
18 Nov
20 Jan
AI-102: Designing and Implementing a Microsoft Azure AI Solution [+]
AI-102: Designing and Implementing a Microsoft Azure AI Solution [-]
Les mer
Nettkurs 375 kr
I dette kurset gir Inga Strümke deg en innføring i hva kunstig intelligens er, og hva du bør tenke på når din bedrift skal ta i bruk kunstig intelligens. [+]
Inga Strümke gir deg en innføring i kunstig intelligens og maskinlæring som gjør det lettere å ta bedre beslutninger. Kunstig intelligens (AI) er mer i vinden enn noensinne, men visste du at det har eksistert som akademisk fagfelt siden 1950-tallet? I dette kurset får du en innføring i hva kunstig intelligens egentlig er for noe, hvordan det brukes i dag og hvordan du kan anvende det for å ta bedre beslutninger. Du lærer om maskinlæring og nevrale nettverk, og hvordan dyp læring brukes til komplekse problemer som språkforståelse og bildegjenkjenning. Du får innsikt i fallgruver, hvorfor de oppstår og hvordan de kan unngås, og ikke minst – hva du bør tenke på når din bedrift skal ta i bruk kunstig intelligens.  HVA VIL DU LÆRE: Kunstig intelligens Maskinlæring, dyp læring og nevrale nettverk Data Bildegjenkjenning og språkforståelse Proxyvariabler og korrelasjon i modeller Forklaringer: Hva og for hvem? Integrering i bedriften Leksjoner Introduksjon til kurset Innføring i kunstig intelligens og algoritmer Maskinlæring Data  Nevrale nettverk og dyp læring Bildegjenkjenning Språkmodeller Proxy-variabler og et eksempel fra forsikring Korrelasjon og kausalitet  Forklaring - hva og for hvem? Eksempler på bruk Helhetlig integrering  Oppsummering [-]
Les mer
Oslo 5 dager 40 000 kr
18 Nov
18 Nov
10 Feb
CEH: Certified Ethical Hacker v13 [+]
CEH: Certified Ethical Hacker v13 [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
5 000 kr
5G Security [+]
5G Security [-]
Les mer
Oslo 1 dag 9 500 kr
28 Nov
28 Nov
AI-050: Develop Generative AI Solutions with Azure OpenAI Service [+]
AI-050: Develop Generative AI Solutions with Azure OpenAI Service [-]
Les mer