IT-kurs
IT kompetanse
Oslo
Du har valgt: Sankt Hanshaugen
Nullstill
Filter
Ferdig

-

31 treff ( i Sankt Hanshaugen ) i IT kompetanse
 

Virtuelt klasserom 4 dager 24 500 kr
This course teaches Solutions Architects how to translate business requirements into secure, scalable, and reliable solutions. Lessons include design considerations relat... [+]
Recommend solutions to minimize costs Recommend a solution for Conditional Access, including multi-factor authentication Recommend a solution for a hybrid identity including Azure AD Connect and Azure AD Connect Recommend a solution for using Azure Policy Recommend a solution that includes KeyVault Recommend a solution that includes Azure AD Managed Identities Recommend a storage access solution Design and Azure Site Recovery solution Recommend a solution for autoscaling Recommend a solution for containers Recommend a solution for network security Recommend a solution for migrating applications and VMs Recommend a solution for migration of databases  Agenda Module 1: Design for Cost Optimization -Recommend Solutions for Cost Management-Recommended Viewpoints for Minimizing Costs Module 2: Design a Solution for Logging and Monitoring -Azure Monitoring Services-Azure Monitor Module 3: Design Authentication -Recommend a Solution for Multi-Factor Authentication-Recommend a Solution for Single-Sign On (SSO)-Five Steps for Securing Identity Infrastructure-Recommend a Solution for a Hybrid Identity-Recommend a Solution for B2B Integration Module 4: Design Authorization -Infrastructure Protection-Recommend a Hierarchical Structure for Management Groups, Subscriptions and Resource Groups Module 5: Design Governance -Recommend a Solution for using Azure Policy-Recommend a Solution for using Azure Blueprint Module 6: Design Security for Applications -Recommend a Solution using KeyVault-Recommend a Solution using Azure AD Managed Identities Module 7: Design a Solution for Databases Select an Appropriate Data Platform Based on RequirementsOverview of Azure Data StorageRecommend Database Service Tier SizingDynamically Scale Azure SQL Database and Azure SQL Managed InstancesRecommend a Solution for Encrypting Data at Rest, Transmission, and In Use Module 8: Design Data Integration -Recommend a Data Flow-Recommend a Solution for Data Integration Module 9: Select an Appropriate Storage Account -Understanding Storage Tiers-Recommend a Storage Access Solution-Recommend Storage Management Tools Module 10: Design a Solution for Backup and Recovery -Recommend a Recovery Solution for Hybrid and On-Premises Workloads-Design and Azure Site Recovery Solution-Recommend a Solution for Recovery in Different Regions-Recommend a Solution for Azure Backup Management-Design a Solution for Data Archiving and Retention Module 11: Design for High Availability -Recommend a Solution for Application and Workload Redundancy-Recommend a Solution for Autoscaling-Identify Resources that Require High Availability-Identify Storage Tpes for High Availability-Recommend a Solution for Geo-Redundancy of Workloads Module 12: Design a Compute Solution -Recommend a Solution for Compute Provisioning-Determine Appropriate Compute Technologies-Recommend a Solution for Containers-Recommend a Solution for Automating Compute Management Module 13: Design a Network Solution -Recommend a Solution for Network Addressing and Name Resolution-Recommend a Solution for Network Provisioning-Recommend a Solution for Network Security-Recommend a Solution for iInternete Connectivity and On-Premises Networks,-Recommend a Solution for Automating Network Management-Recommend a Solution for Load Balancing and Rraffic Routing Module 14: Design an Application Architecture -Recommend a Microservices Architecture-Recommend an Orchestration Solution for Deployment of Applications-Recommend a Solution for API Integration Module 15: Design Migrations -Assess and On-Premises Servers and Applications for Migration-Recommend a Solution for Migrating Applications and VMs-Recommend a Solution for Migration of Databases [-]
Les mer
Virtuelt klasserom 4 dager 24 500 kr
This course teaches IT Professionals how to manage their Azure subscriptions, secure identities, administer the infrastructure, configure virtual networking, connect Azur... [+]
Prerequisites Successful Azure Administrators start this role with experience on operating systems, virtualization, cloud infrastructure, storage structures, and networking. Understanding of on-premises virtualization technologies, including: VMs, virtual networking, and virtual hard disks. Understanding of network configuration, including TCP/IP, Domain Name System (DNS), virtual private networks (VPNs), firewalls, and encryption technologies. Understanding of Active Directory concepts, including domains, forests, domain controllers, replication, Kerberos protocol, and Lightweight Directory Access Protocol (LDAP). Understanding of resilience and disaster recovery, including backup and restore operations. Agenda Module 1: Identity -Azure Active Directory-Users and Groups Module 2: Governance and Compliance -Subscriptions and Accounts-Azure Policy-Role-based Access Control (RBAC) Module 3: Azure Administration -Azure Resource Manager-Azure Portal and Cloud Shell-Azure PowerShell and CLI-ARM Templates Module 4: Virtual Networking -Virtual Networks-IP Addressing-Network Security groups-Azure Firewall-Azure DNS Module 5: Intersite Connectivity -VNet Peering-VPN Gateway Connections-ExpressRoute and Virtual WAN Module 6: Network Traffic Management -Network Routing and Endpoints-Azure Load Balancer-Azure Application Gateway-Traffic Manager Module 7: Azure Storage -Storage Accounts-Blob Storage-Storage Security-Azure Files and File Sync-Managing Storage Module 8: Azure Virtual Machines -Virtual Machine Planning-Creating Virtual Machines-Virtual Machine Availability-Virtual Machine Extensions Module 9: Serverless Computing -Azure App Service Plans-Azure App Service-Container Services-Azure Kubernetes Service Module 10: Data Protection -File and Folder Backups-Virtual Machine Backup Module 11: Monitoring -Azure Monitor-Azure Alerts-Log Analytics-Network Watcher [-]
Les mer
Nettstudier 1 semester 4 980 kr
På forespørsel
Utviklingsprosesser. Modellering. UML. Verktøy. Objektorientert analyse Objektorientert design. Bruk av arkitektoniske stiler og design mønstre. Implementasjon og test. [+]
Studieår: 2013-2014   Gjennomføring: Høst Antall studiepoeng: 5.0 Forutsetninger: Erfaring fra et objektorientert programmeringsspråk, kjennskap til prosjektarbeid Innleveringer: Innleverte øvinger. Det blir gitt 10 øvinger, 8 må være godkjent for å kunne gå opp til eksamen. Personlig veileder: ja Vurderingsform: 4 timer skriftlig eksamen. Ansvarlig: Tore Berg Hansen Eksamensdato: 12.12.13         Læremål: Forventet læringsutbytte:Etter å ha gjennomført emnet Objektorientert systemutvikling skal studenten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan definere, gjenkjenne og forklare de grunnleggende konsepter for utvikling av store programvaresystemer basert på det objektorienterte paradigme- argumentere for betydningen av å følge en prosessmodell- argumentere for fordelene med smidige prosesser- argumentere for modellbasert utvikling- beskrive modellene som brukes i objektorientert systemutvikling og hvordan de henger sammen- forklare begrepene arkitektoniske stiler og designmønstre FERDIGHETER:Kandidaten:- kan demonstrere den systematiske gangen fra krav, via arkitektonisk og detaljert design, til ferdig kodet og implementert system GENERELL KOMPETANSE:Kandidaten:- er klar over at utvikling av store programvaresystemer er ingeniørarbeid- er seg bevisst at utvikling av komplekse programvaresystemer krever koordinert innsats av et velfungerende team som følger en definert, smidig prosess- er opptatt av tett kontakt med alle interessenter for å oppnå et godt resultat Innhold:Utviklingsprosesser. Modellering. UML. Verktøy. Objektorientert analyse Objektorientert design. Bruk av arkitektoniske stiler og design mønstre. Implementasjon og test.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Dette faget går: Høst 2013    Fag Objektorientert systemutvikling 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
1 dag 6 200 kr
Data genereres i stadig større mengder - av mennesker, av sensorer og av innebygde dataenheter. Mottak, behandling og analyse av store datamengder krever distribuerte tek... [+]
Data genereres i stadig større mengder - av mennesker, av sensorer og av innebygde dataenheter. Mottak, behandling og analyse av store datamengder krever distribuerte teknologier og lagringsformater. Big Data er blitt et fellesbegrep på disse teknologiene og dataene de behandler. Det er i dag forretningskritisk innenfor flere og flere bransjer å kunne håndtere Big Data. Men hvor skal man begynne? Kursinnhold Hvordan defineres Big Data? Hvilke problemstillinger kan løses med Big Data Hvilke Big Data teknologier finnes og hvilke bør vi satse på? Hva er hovedutfordringene med å ta i bruk Big Data? Kurset gjennomføres som en serie foredrag med rom for spørsmål og utdypninger innen hvert emne. De mest brukte teknologiene innen Big Data lagring, datahåndtering og analyse blir gjennomgått og vurdert, inkludert Hadoop, Spark, Hive, HBase, Cassandra, Kafka, MongoDB og en rekke andre. [-]
Les mer
4 dager 4 865 kr
På forespørsel
Modul Build består av de tradisjonelle, tekniske aspektene ved design, spesifikasjon, utvikling, testing, integrering og anvendelse av IT-systemer [+]
Kursinnhold• Systemutvikling, prosess og metode• Datahåndteringe og databaser  • Programmering• Brukergrensesnitt og webdesign   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.   Målsetning Modul Build består av de tradisjonelle, tekniske aspektene ved design, spesifikasjon, utvikling, testing, integrering og anvendelse av IT-systemer. Det krever at kandidaten forstår systemutviklingens livssyklus, kjenner til den typiske utviklingsprosessen og er klar over de nyeste utviklingstrekk innen programvare. Kandidaten skal også kunne benytte relevante metoder og verktøy. Kandidaten skal kjenne til designprinsipper knyttet til brukergrensesnitt, websider og hypermedia, så vel som de som brukes i relasjonsdatabaser og datavarehus. Kandidaten vil også få en grunnleggende kunnskap om søkespråk og være oppmerksom på noen viktige databaseadministrasjonsproblemer. I tillegg skal kandidaten være i stand til å anvende typiske datastrukturer og algoritmer, gjenkjenne ulike programmeringsspråk og konstruksjoner, vurdere problemer med å opprettholde systemer, samt kjenne til dokumentasjon og testing av software systemer. [-]
Les mer
Virtuelt klasserom 3 timer
Skriv kursbeskrivelse her [+]
Skriv kursbeskrivelse her [-]
Les mer
8 dager 8 925 kr
På forespørsel
Kandidaten vil bl.a. få en grunnleggende kunnskap om søkespråk og være oppmerksom på noen viktige databaseadministrasjonsproblemer [+]
Kursinnhold• Systemutvikling, prosess og metode• Datahåndteringe og databaser  • Programmering• Brukergrensesnitt og webdesign   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.     [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
12 Jun
28 Jun
17 Jul
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Virtuelt klasserom 4 dager 24 000 kr
This course provides students with the skills and knowledge required to successfully create and maintain the cloud and edge portions of an Azure IoT solution. The course ... [+]
  An Azure IoT Developer is responsible for implementing and then maintaining the cloud and edge portions of an Azure IoT solution. In addition to configuring and maintaining devices by using Azure IoT services and other Microsoft tools, the IoT Developer also sets up the physical devices and is responsible for maintaining the devices throughout the life cycle. The IoT Developer implements designs for IoT solutions, including device topology, connectivity, debugging and security. For Edge device scenarios, the IoT Developer also deploys compute/containers and configures device networking, which could include various edge gateway implementations. The IoT Developer implements designs for solutions to manage data pipelines, including monitoring and data transformation as it relates to IoT. The IoT Developer works with data engineers and other stakeholders to ensure successful business integration. IoT Developers should have a good understanding of Azure services, including data storage options, data analysis, data processing, and the Azure IoT PaaS versus SaaS options. After completing this course, students will be able to: Create, configure, and manage an Azure IoT hub. Provision devices by using IoT Hub and DPS, including provisioning at scale. Establish secure 2-way communication between devices and IoT Hub. Implement message processing by using IoT Hub routing and Azure Stream Analytics. Configure the connection to Time Series Insights and support business integration requirements. Implement IoT Edge scenarios using marketplace modules and various edge gateway patterns. Implement IoT Edge scenarios that require developing and deploying custom modules and containers. Implement device management using device twins and direct methods. Implement solution monitoring, logging, and diagnostics testing. Recognize and address security concerns and implement Azure Security Center for IoT. Build an IoT Solution by using Azure IoT Central and recongize SaaS opportunities for IoT. Course prerequisites IoT Developers should have basic programming skills in at least one Azure-supported language, including C#, Node.js, C, Python, or Java. Software development experience is a prerequisite for this course, but no specific software language is required, and the experience does not need to be at a professional level. Data Processing Experience: General understanding of data storage and data processing is a recommended but not required.  Cloud Solution Awareness: Students should have a basic understanding of PaaS, SaaS, and IaaS implementations. Microsoft Azure Fundamentals (M-AZ-900T00/M-AZ900), or equivalent skills, is recommended.  This course helps to prepare for exam AZ-220.   Agenda Module 1: Introduction to IoT and Azure IoT Services -Business Opportunities for IoT-Introduction to IoT Solution Architecture-IoT Hardware and Cloud Services Module 2: Devices and Device Communication -IoT Hub and Devices-IoT Developer Tools-Device Configuration and Communication Module 3: Device Provisioning at Scale -Device Provisioning Service Terms and Concepts-Configure and Manage the Device Provisioning Service-Device Provisioning Tasks Module 4: Message Processing and Analytics -Messages and Message Processing-Data Storage Options-Azure Stream Analytics Module 5: Insights and Business Integration -Business Integration for IoT Solutions-Data Visualization with Time Series Insights-Data Visualization with Power BI Module 6: Azure IoT Edge Deployment Process -Introduction to Azure IoT Edge-Edge Deployment Process-Edge Gateway Devices Module 7: Azure IoT Edge Modules and Containers -Develop Custom Edge Modules-Offline and Local Storage Module 8: Device Management -Introduction to IoT Device Management-Manage IoT and IoT Edge Devices-Device Management at Scale Module 9: Solution Testing, Diagnostics, and Logging -Monitoring and Logging-Troubleshooting Module 10: Azure Security Center and IoT Security Considerations -Security Fundamentals for IoT Solutions-Introduction to Azure Security Center for IoT-Enhance Protection with Azure Security Center for IoT Agents Module 11: Build an IoT Solution with IoT Central -Introduction to IoT Central-Create and Manage Device Templates-Manage Devices in Azure IoT Central [-]
Les mer
Bedriftsintern 2 dager 11 500 kr
This course begins with an overview of the different cloud computing models and services provided by the major public cloud providers. Several cloud computing concerns li... [+]
Course Description This course then focuses on enterprise application to cloud concerns including planning and executing a migration, building the business case, managing application dependencies, selecting a proof of concept, and serverless/managed services. A series of instructor-led demonstrations and hands-on activities provide students with practical, hands-on experience. Learning Objectives Learn what technologies enable cloud computing Understand the definition and characteristics of cloud computing Compare service models: IaaS, PaaS, SaaS, Serverless Develop the business case for a cloud migration Plan a successful cloud migration Decipher the risks of both development and security with cloud computing Analyze the costs of using cloud computing and an approach to calculating them Objection handling when dealing with projects situations around risk All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Unit 1: Enabling Technologies -Networking-Virtualization-Overview of Virtualization-Hypervisors and Containers-Security and Virtualization-Multi-tenancy Unit 2: Cloud Computing Concepts -Cloud Definition-Characteristics of Clouds-Cloud Service and Deployment Models-Public Cloud Products and Services Unit 3: Cloud Service Models -Comparing Services Offered by Google Cloud Platform (GCP), Amazon Web Services (AWS), and Azure-Compute Services-Storage Services-Kubernetes Services-Serverless and Managed Services-Big Data and Machine Learning Unit 4: Building a Business Case for the Cloud -Economic and Financial-Understand the Cloud Cost Model-Calculating the Cost of a Cloud Solution-Transform Capital Expenditures to Operating Expenditures-Agility-Lower Risk of Adopting and Evaluating New Technology-Reduce Time to Market-Quickly React as Markets and Requirements Change-Risk Mitigation-High Quality Infrastructure-Reduce Downtime-Cloud SLAs-Leveraging Hybrid and Multi-Cloud Solutions-Staff Utilization-Eliminate Mundane Operational Tasks-Harness Monitoring and Logging-Onboarding Applications and Users Unit 5: Migrating to the Public Cloud -Phases in a Successful Migration-Assessment-Proof of Concept-Data Migration-Application Migration-Employ Cloud Native Services-Cloud Native Development-Selecting Workloads-Backup / Disaster Recovery-Packaged Enterprise Software-Custom Applications-Open-Source Applications Unit 6: Security and the Cloud -Cloud-based Security Issues-Shared Responsibility Model-Security Auditing in the Cloud-Compliance with Regulatory Constraints [-]
Les mer
Nettstudier 1 semester 4 980 kr
På forespørsel
Datamaskinarkitektur: De viktigste komponentene og deres virkemåte og oppbygging: CPU, buss, lagerteknologier (cache og ulike typer primær- og sekundærlager), kontrollere... [+]
  Studieår: 2013-2014   Gjennomføring: Vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: For å kunne gå opp til eksamen må 8 utvalgte øvingsoppgaver være godkjente. Det settes krav til at studenten har tilgang til en PC som kan brukes til praktiske maskinvare- og programvareendringer for å trene på feildiagnostisering og feilretting. Maskinen kan gjerne være en eldre og utdatert maskin, men den må virke. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, individuell, 3 timer. Ansvarlig: Geir Ove Rosvold Eksamensdato: 20.12.13 / 23.05.14         Læremål: KUNNSKAPER:Kandidaten:- har innsikt i datamaskinens virkemåte både fra et teoretisk og praktisk ståsted- kjenner godt til de enkelte komponenter i datamaskinen og hvordan de virker sammen- kjenner til de grunnleggende matematikk- og informatikktema (tallsystemer, datarepresentasjon, lokalitet) som er relevante for emnets tekniske hovedtemaer FERDIGHETER:Kandidaten:- kan gjøre nytte av sine teoretiske kunnskaper inne emnets tema i relevant praktisk problemløsing- kan optimalisere, oppgradere og holde ved like en datamaskin, samt diagnostisere, feilsøke og reparere en datamaskin ved de vanligste feilsituasjoner GENERELL KOMPETANSE:Kandidaten:- har kompetanse til selvstendig både å formidle og å ta i bruk sine kunnskaper og ferdigheter innen emnets tema- kan i en praktisk driftssituasjon, forklare og gjøre bruk av sin kunnskap både innen hvert enkelt tema i faget og på tvers av temaene Innhold:Datamaskinarkitektur: De viktigste komponentene og deres virkemåte og oppbygging: CPU, buss, lagerteknologier (cache og ulike typer primær- og sekundærlager), kontrollere og io-utstyr, avbruddsmekanismen, DMA, brikkesett og moderne systemarkitektur, ulike maskinklasser. Prosessorarkitektur: Pipeline, superskalaritet, dynamisk utføring, mikrooperasjoner, kontrollenheten, hardkoding kontra mikroprogrammering, RISC og CISC. Teori-tema: Tallsystemer. Datarepresentasjon og -aritmetikk. Buss- og lagerhierarki. Cache og lokalitet. Høynivåspråk kontra assembly. Praktisk driftsarbeid: Kabinett, hovedkort, ulike prosessorer, buss, RAM, cache, BIOS. Lyd-, nettverks-og skjermkort. Sekundærminne (Harddisk, CD-ROM, DVD, tape og andre typer). Avbruddsmekanismen, I/O, DMA og busmastering. Å oppdage og rette feil. Boot-prosessen. Formatering, partisjonering.Les mer om faget her [-]
Les mer
Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Oslo 5 dager 35 000 kr
12 Jun
12 Jun
09 Oct
CEH: Certified Ethical Hacker v12 [+]
CEH: Certified Ethical Hacker v12 [-]
Les mer
6 dager 7 525 kr
På forespørsel
Modul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon [+]
Kursinnhold     * Organisasjoner og bruk av IT    * IT- ledelse                     * Verdsettelse av IT    * Den globale nettverksøkonomien    * Prosjektledelse    * Samarbeid og kommunikasjon    * Juridiske og etiske problemstillinger   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.     InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.     MålsetningModul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon. Modulen krever at kandidaten skal ha en grundig forståelse av organisasjoner, deres strategier og forretningsprosesser, samt de globale trender og muligheter som er involvert. Kandidaten skal kjenne igjen de viktigste problemstillinger knyttet til styringen av IT, som for eksempel å velge riktig teknologi, eller å velge mellom utvikling av interne systemer eller outsourcing. Kandidaten skal også kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT.   Kandidaten skal bli oppmerksom på kravet om en profesjonell tilnærming til prosjektledelse og kvalitetsikring. Kandidaten skal også forstå betydningen av teambygging og effektivt kommunikasjon når man presenterer sin analyse eller beslutning for organisasjonen.   [-]
Les mer
3 dager 4 515 kr
På forespørsel
Kandidaten skal bl.a. kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT [+]
Kursinnhold• Organisasjoner og bruk av IT• IT- ledelse  • Verdsettelse av IT• Den globale nettverksøkonomien• Prosjektledelse• Samarbeid og kommunikasjon• Juridiske og etiske problemstillinger   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.   MålsetningModul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon. Modulen krever at kandidaten skal ha en grundig forståelse av organisasjoner, deres strategier og forretningsprosesser, samt de globale trender og muligheter som er involvert. Kandidaten skal kjenne igjen de viktigste problemstillinger knyttet til styringen av IT, som for eksempel å velge riktig teknologi, eller å velge mellom utvikling av interne systemer eller outsourcing. Kandidaten skal også kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT. Kandidaten skal bli oppmerksomm på kravet om en profesjonell tilnærming til prosjektledelse og kvalitetsikring. Kandidaten skal også forstå betydningen av teambygging og effektivt kommunikasjon når man presenterer sin analyse eller beslutning for organisasjonen. [-]
Les mer