IT-kurs
Buskerud
Du har valgt: Ål kommune
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Ål kommune ) i IT-kurs
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to plan and manage the full lifecycle of all IT assets to help your organisation maximise value, control costs, and manage risks related to the purchase, use, a... [+]
Understand the purpose and key concepts of IT Asset Management, elucidating its significance in managing and optimising the lifecycle of IT assets to maximise value, control costs, and manage risks. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Virtuelt eller personlig 3 dager 12 900 kr
AutoCAD Plant 3D er en omfattende integrert løsning som er faglig engasjerende med fokus på effektiv prosjektgjennomføring. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   AutoCAD plant 3D grunnkurs  Her er et utvalg av temaene du vil lære på kurset: Prosjektoppsetning og Modullinjer/net Design av stålkonstruksjoner Utstyr (opprettelse av utstyr og import av utstyr bl.a. fra Inventor) Rørdesign i 3D-modellen Redigering av stål, utstyr og rørtrekk Opprettelse av arrangementstegninger og rørisometritegninger  Uttrekk av mengdedata i listeform Kurset  gir  en innføring i systemets oppbygging med rørdesign i sentrum. Videre gjennomgås de enkelte modulene i henhold til følgende arbeidsflyt: P&ID. Integrert i løsningen er velkjente AutoCAD P&ID og vi tar utgangspunkt i et enkelt flytdiagram som representerer det skjematiske designet for minifabrikken vi skal modellere Stål/Struktur. Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no   [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Deltakerne lærer å håndtere lister på en rask og effektiv måte og vi ser også på noen av fordelene ved å gjøre en liste om til en tabell og når en ikke bør gjøre det. Ved... [+]
Kursinnhold Flash Fill Diagrammer Sparkline grafikk Hurtiganalyse Sortering og filtrering Avansert filter Delsammendrag Tabeller Målgruppe Deg som Jobber med lister i Excel Ønsker å effektivisere databehandlingen i Excel Vil ha en kjapp gjennomgang av disse elementene. Har grunnleggende kunnskaper i Excel og ønsker å lære mer. Forkunnskaper Har laget regneark Har kunnskaper tilsvarende «Ta kontroll over regnearket» Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Installasjon av webserver med scriptspråk og database. PHP, tilstandsbevaring (sesjonshåndtering), JavaScript, Ajax, web på mobile enheter, avansert innhold (lyd, video, ... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende kunnskaper i HTML, CSS og programmering. Dette tilsvarer Webutvikling 1 og et vilkårlig programmeringsemne. Innleveringer: For å kunne gå opp til eksamen må 5 av 8 obligatoriske øvingsoppgaver være godkjent. Personlig veileder: ja Vurderingsform: Karakteren settes på grunnlag av større øving/case (60 %) og flervalgseksamen på nett (40 %). Netteksamen varer 1 t. Begge deler må være bestått. klageadgang i emnet gjelder hver enkelt vurderingsdel. Ansvarlig: Tore Mallaug Eksamensdato: 11.12.13 / 14.05.14         Læremål: KUNNSKAPER:Kandidaten:- forstår hvordan et nettsted er delt i funksjonalitet som utføres på tjeneren og funksjonalitet som utføres i nettleseren- kjenner til aktuelle teknologier som kan anvendes for å konstruere et nettsted FERDIGHETER:Kandidaten:- kan utvikle utvikle nettsteder med logikk på både klient- og tjenerside- kan å utvikle et komplett nettsted basert på en kombinasjon av tredjepartskomponenter og egen kode/design- har grunnleggende kunnskap i PHP og JavaScript- kan teknikker for å utveksle data med andre parter på Internett GENERELL KOMPETANSE:Kandidaten:- kan identifisere potensielle sikkerhetsmessige svakheter i en webløsning og iverksette gode sikkerhetstiltak Innhold:Installasjon av webserver med scriptspråk og database. PHP, tilstandsbevaring (sesjonshåndtering), JavaScript, Ajax, web på mobile enheter, avansert innhold (lyd, video, 3D, m.m.), bruk av tredjeparts datakilder (web services m.m.), sikkerhet i webapplikasjoner, komponentbasert webutvikling.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Webutvikling 2 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 5 dager 33 000 kr
OFFICIAL (ISC)2 CERTIFIED INFORMATION SYSTEMS SECURITY PROFESSIONAL TRAINING - INCLUDING EXAM [+]
COURSE OVERVIEW The Certified Information Systems Security Professional (CISSP) is the most globally recognized certification in the cybersecurity market. CISSP validates a cybersecurity professional’s deep technical and managerial knowledge and experience to effectively design, engineer and manage an organization’s overall security posture. Please note an exam voucher is included as part of this course TARGET AUDIENCE Cybersecurity professionals with at least 5 years in the information security field. Member data has shown that amajority of CISSP holders are in middle management and a much smaller proportion are in senior or junior/entry-level positions. Roles include:• Chief Information Officer• Chief Information Security Officer• Chief Technology Officer• Compliance Manager / Officer• Director of Security• Information Architect• Information Manager / Information RiskManager or Consultant• IT Specialist / Director / Manager• Network / System Administrator• Security Administrator• Security Architect / Security Analyst• Security Consultant• Security Manager• Security Systems Engineer / Security EngineerSectorsCISSP is relevant across all sectors and industries, including:• Aerospace• Automotive• Banking, financial services, insurance (BFSI)• Construction• Cybersecurity• Energy• Engineering• Government• Healthcare, IT products, services, consulting• Manufacturing• Pharma• Retail• Telecom COURSE OBJECTIVESAfter completing this course you should be able to: Understand and apply fundamental concepts and methods related to the fields of information technology and security Align overall organizational operational goals with security functions and implementations. Understand how to protect assets of the organization as they go through their lifecycle. Understand the concepts, principles, structures and standards used to design, implement, monitor and secure operating systems, equipment, networks, applications and those controls used to enforce various levels of confidentiality, integrity and availability. Implement system security through the application of security design principles and application of appropriate security control mitigations for vulnerabilities present in common information system types and architectures. Understand the importance of cryptography and the security services it can provide in today’s digital and information age. Understand the impact of physical security elements on information system security and apply secure design principles to evaluate or recommend appropriate physical security protections. Understand the elements that comprise communication and network security coupled with a thorough description of how the communication and network systems function. List the concepts and architecture that define the associated technology and implementation systems and protocols at Open Systems Interconnection (OSI) model layers 1-7. Identify standard terms for applying physical and logical access controls to environments related to their security practice. Appraise various access control models to meet business security requirements. Name primary methods for designing and validating test and audit strategies that support business requirements. Enhance and optimize an organization’s operational function and capacity by applying and utilizing appropriate security controls and countermeasures. Recognize risks to an organization’s operational endeavours and assess specific threats, vulnerabilities and controls. Understand the System Lifecycle (SLC) and the Software Development Lifecycle (SDLC) and how to apply security to it; identify which security control(s) are appropriate for the development environment; and assess the effectiveness of software security. COURSE CONTENT Domain 1: Security and Risk Management Domain 2: Asset Security Domain 3: Security Architecture and Engineering Domain 4: Communication and Network Security Domain 5: Identity and Access Management (IAM) Domain 6: Security Assessment and Testing Domain 7: Security Operations Domain 8: Software Development Security TEST CERTIFICATION Recommended as preparation for the following exam: (ISC)2 Certified Information Systems Security Professional Gaining this accreditation is not just about passing the exam, there are a number of other criteria that need to be met including 5 years of cumulative, paid work experience in two or more of the eight domains of the (ISC)²® CISSP CBK . Full details can be found at https://www.isc2.org/cissp/default.aspx Those without the required experience can take the exam to become an Associate of (ISC)²  while working towards the experience needed for full certification Please note an exam voucher is included as part of this course   [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
This course teaches Network Engineers how to design, implement, and maintain Azure networking solutions. [+]
COURSE OVERVIEW  This course covers the process of designing, implementing, and managing core Azure networking infrastructure, Hybrid Networking connections, load balancing traffic, network routing, private access to Azure services, network security and monitoring. Learn how to design and implement a secure, reliable, network infrastructure in Azure and how to establish hybrid connectivity, routing, private access to Azure services, and monitoring in Azure. TARGET AUDIENCE This course is aimed at Network Engineers looking to specialize in Azure networking solutions. An Azure Network engineer designs and implements core Azure networking infrastructure, hybrid networking connections, load balance traffic, network routing, private access to Azure services, network security and monitoring. The azure network engineer will manage networking solutions for optimal performance, resiliency, scale, and security. COURSE CONTENT Module 1: Azure Virtual Networks In this module you will learn how to design and implement fundamental Azure Networking resources such as virtual networks, public and private IPs, DNS, virtual network peering, routing, and Azure Virtual NAT. Azure Virtual Networks Public IP Services Public and Private DNS Cross-VNet connectivity Virtual Network Routing Azure virtual Network NAT Lab 1: Design and implement a Virtual Network in Azure Lab 2: Configure DNS settings in Azure Lab 3: Connect Virtual Networks with Peering After completing module 1, students will be able to: Implement virtual networks Configure public IP services Configure private and public DNS zones Design and implement cross-VNET connectivity Implement virtual network routing Design and implement an Azure Virtual Network NAT   Module 2: Design and Implement Hybrid Networking In this module you will learn how to design and implement hybrid networking solutions such as Site-to-Site VPN connections, Point-to-Site VPN connections, Azure Virtual WAN and Virtual WAN hubs. Site-to-site VPN connection Point-to-Site VP connections Azure Virtual WAN Lab 4: Create and configure a local gateway Create and configure a virtual network gateway Create a Virtual WAN by using Azure Portal Design and implement a site-to-site VPN connection Design and implement a point-to-site VPN connection Design and implement authentication Design and implement Azure Virtual WAN Resources   Module 3: Design and implement Azure ExpressRoute In this module you will learn how to design and implement Azure ExpressRoute, ExpressRoute Global Reach, ExpressRoute FastPath and ExpressRoute Peering options. ExpressRoute ExpressRoute Direct ExpressRoute FastPath ExpressRoute Peering Lab 5: Create and configure ExpressRoute Design and implement Expressroute Design and implement Expressroute Direct Design and implement Expressroute FastPath   Module 4: load balancing non-HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for non-HTTP(S) traffic in Azure with Azure Load balancer and Traffic Manager. Content Delivery and Load Blancing Azure Load balancer Azure Traffic Manager Azure Monitor Network Watcher Lab 6: Create and configure a public load balancer to load balance VMs using the Azure portal Lab:7 Create a Traffic Manager Profile using the Azure portal Lab 8: Create, view, and manage metric alerts in Azure Monitor Design and implement Azure Laod Balancers Design and implement Azure Traffic Manager Monitor Networks with Azure Monitor Use Network Watcher   Module 5: Load balancing HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for HTTP(S) traffic in Azure with Azure Application gateway and Azure Front Door. Azure Application Gateway Azure Front Door Lab 9: Create a Front Door for a highly available web application using the Azure portal Lab 10: Create and Configure an Application Gateway Design and implement Azure Application Gateway Implement Azure Front Door   Module 6: Design and implement network security In this module you will learn to design and imponent network security solutions such as Azure DDoS, Azure Firewalls, Network Security Groups, and Web Application Firewall. Azure DDoS Protection Azure Firewall Network Security Groups Web Application Firewall on Azure Front Door Lab 11: Create a Virtual Network with DDoS protection plan Lab 12: Deploy and Configure Azure Firewall Lab 13: Create a Web Application Firewall policy on Azure Front Door Configure and monitor an Azure DDoS protection plan implement and manage Azure Firewall Implement network security groups Implement a web application firewall (WAF) on Azure Front Door   Module 7: Design and implement private access to Azure Services In this module you will learn to design and implement private access to Azure Services with Azure Private Link, and virtual network service endpoints. Define Azure Private Link and private endpoints Design and Configure Private Endpoints Integrate a Private Link with DNS and on-premises clients Create, configure, and provide access to Service Endpoints Configure VNET integration for App Service Lab 14: restrict network access to PaaS resources with virtual network service endpoints Lab 15: create an Azure private endpoint Define the difference between Private Link Service and private endpoints Design and configure private endpoints Explain virtual network service endpoints Design and configure access to service endpoints Integrate Private Link with DNS Integrate your App Service with Azure virtual networks   TEST CERTIFICATION This course helps to prepare for exam AZ-700 [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Dagens byggebransje fokuserer på BIM. Autodesk Revit Architecture er det ledende systemet i Norge for arkitekter innen BIM prosjektering. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Revit Architecture Basis I Her er et utvalg av temaene du vil lære på kurset: Introduksjon til BIM Modellering av 3D-bygningsmodell i flere detaljeringsgrader (informasjonsnivåer) Samarbeid med andre fagmodeller Generering av planer, snitt, fasader, detaljer og perspektiver Skjemaer og mengdeuttrekk Oppsetning til print A Anvendelse av relevante NTItools Kurset gir deg innblikk i bruken av BIM-arbeidsmetoder med Revit som hovedverktøy. Det bygges opp en full, parametrisk 3D-modell, hvor de grunnleggende funksjonene i Revit benyttes. DU vil få en bred forståelse av både prinsipper og funksjoner i Revit og skal bli i stand til å øke detaljeringen av prosjektet ytterligere.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Virtuelt klasserom 4 dager 24 000 kr
This course provides students with the skills and knowledge required to successfully create and maintain the cloud and edge portions of an Azure IoT solution. The course ... [+]
  An Azure IoT Developer is responsible for implementing and then maintaining the cloud and edge portions of an Azure IoT solution. In addition to configuring and maintaining devices by using Azure IoT services and other Microsoft tools, the IoT Developer also sets up the physical devices and is responsible for maintaining the devices throughout the life cycle. The IoT Developer implements designs for IoT solutions, including device topology, connectivity, debugging and security. For Edge device scenarios, the IoT Developer also deploys compute/containers and configures device networking, which could include various edge gateway implementations. The IoT Developer implements designs for solutions to manage data pipelines, including monitoring and data transformation as it relates to IoT. The IoT Developer works with data engineers and other stakeholders to ensure successful business integration. IoT Developers should have a good understanding of Azure services, including data storage options, data analysis, data processing, and the Azure IoT PaaS versus SaaS options. After completing this course, students will be able to: Create, configure, and manage an Azure IoT hub. Provision devices by using IoT Hub and DPS, including provisioning at scale. Establish secure 2-way communication between devices and IoT Hub. Implement message processing by using IoT Hub routing and Azure Stream Analytics. Configure the connection to Time Series Insights and support business integration requirements. Implement IoT Edge scenarios using marketplace modules and various edge gateway patterns. Implement IoT Edge scenarios that require developing and deploying custom modules and containers. Implement device management using device twins and direct methods. Implement solution monitoring, logging, and diagnostics testing. Recognize and address security concerns and implement Azure Security Center for IoT. Build an IoT Solution by using Azure IoT Central and recongize SaaS opportunities for IoT. Course prerequisites IoT Developers should have basic programming skills in at least one Azure-supported language, including C#, Node.js, C, Python, or Java. Software development experience is a prerequisite for this course, but no specific software language is required, and the experience does not need to be at a professional level. Data Processing Experience: General understanding of data storage and data processing is a recommended but not required.  Cloud Solution Awareness: Students should have a basic understanding of PaaS, SaaS, and IaaS implementations. Microsoft Azure Fundamentals (M-AZ-900T00/M-AZ900), or equivalent skills, is recommended.  This course helps to prepare for exam AZ-220.   Agenda Module 1: Introduction to IoT and Azure IoT Services -Business Opportunities for IoT-Introduction to IoT Solution Architecture-IoT Hardware and Cloud Services Module 2: Devices and Device Communication -IoT Hub and Devices-IoT Developer Tools-Device Configuration and Communication Module 3: Device Provisioning at Scale -Device Provisioning Service Terms and Concepts-Configure and Manage the Device Provisioning Service-Device Provisioning Tasks Module 4: Message Processing and Analytics -Messages and Message Processing-Data Storage Options-Azure Stream Analytics Module 5: Insights and Business Integration -Business Integration for IoT Solutions-Data Visualization with Time Series Insights-Data Visualization with Power BI Module 6: Azure IoT Edge Deployment Process -Introduction to Azure IoT Edge-Edge Deployment Process-Edge Gateway Devices Module 7: Azure IoT Edge Modules and Containers -Develop Custom Edge Modules-Offline and Local Storage Module 8: Device Management -Introduction to IoT Device Management-Manage IoT and IoT Edge Devices-Device Management at Scale Module 9: Solution Testing, Diagnostics, and Logging -Monitoring and Logging-Troubleshooting Module 10: Azure Security Center and IoT Security Considerations -Security Fundamentals for IoT Solutions-Introduction to Azure Security Center for IoT-Enhance Protection with Azure Security Center for IoT Agents Module 11: Build an IoT Solution with IoT Central -Introduction to IoT Central-Create and Manage Device Templates-Manage Devices in Azure IoT Central [-]
Les mer
Oslo 5 dager 27 500 kr
25 Aug
15 Sep
15 Sep
MD-102 : Microsoft 365 Endpoint Administrator [+]
MD-102 : Microsoft 365 Endpoint Administrator [-]
Les mer
Nettkurs 3 timer 549 kr
Dette nettkurset er perfekt for deg som allerede har noen grunnleggende ferdigheter i Python og ønsker å lære objektorientert programmering (OOP). Med OOP vil du kunne re... [+]
Dette nettkurset fokuserer på objektorientert programmering (OOP) i Python og er ideelt for de som allerede har grunnleggende ferdigheter i Python og ønsker å utvide sine kunnskaper. OOP gir deg muligheten til å skrive kode som er mer strukturert, gjenbrukbar og enklere å vedlikeholde. Kurset, ledet av erfaren systemutvikler og instruktør Magnus Kvendseth Øye, vil veilede deg gjennom nøkkelkonsepter innen OOP i Python. I løpet av kurset vil du lære å se på koden din som en samling av dynamiske objekter som samhandler med hverandre. Du vil utforske følgende emner: Kapittel 1: Introduksjon Kapittel 2: Klasser og egenskaper Kapittel 3: Metoder Kapittel 4: Representasjon Kapittel 5: Arv Kapittel 6: Prosjekt Kapittel 7: Avslutning Med Magnus Kvendseth Øye som din veileder, vil du få en solid forståelse av hvordan du kan bruke OOP-prinsipper i Python for å skape ren, effektiv og strukturert kode. Dette kurset gir deg muligheten til å ta dine Python-ferdigheter til neste nivå.   Varighet: 3 timer og 8 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
1 dag 3 700 kr
Klasseromskurs små klasser maks 5 personer. Kurs kan holdes bedriftinternt i din bedrift, eller også via Zoom. Lær gode regnearkoppsett med formler, funksjoner og diagr..... [+]
Innhold: Bygge opp gode regnearkoppsett med formler, funksjoner og diagrammer. Summere flere regneark. Låse celler. Absolutt celle referanse, parenteser, hvis formler, Pivottabell. Kursholder Marianne Nylund er utdannet systemasvarlig/IKT-rådgiver fra forsvaret,Hun er sertifisert Microsoft-instruktør og har holdtMicrosoft Office-kurs siden 1998. Kursleder er tydelig, pedagogisk og flink til å forklare. Hun engasjerer sine kursdeltakere og gjør det underholdende å delta på våre kurs.Hun er meget tålmodig og tilpasser undervisningen etter hver enkelt deltagers behov, slik at alle skal få et stort utbytte av kursene.   [-]
Les mer