IT-kurs
Telemark
Du har valgt: Bø i Telemark
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Bø i Telemark ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn about the processes and activities of the Incident Management practice, and their roles within the service value chain. [+]
Understand the purpose and key concepts of Incident Management, including its role in restoring normal service operations swiftly following disruptions.   This eLearning is: Interactive Self-paced   Device-friendly   2-3 hour content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to ensure that the organisation’s suppliers and their performances are managed appropriately to support the seamless provision of quality pr... [+]
Understand the purpose and key concepts of the Supplier Management Practice, elucidating its importance in managing supplier relationships and ensuring value delivery from third-party services. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
06 Oct
24 Nov
AI-3002: Create document intelligence solutions with Azure AI Document Intelligence [+]
AI-3002: Create document intelligence solutions with Azure AI Document Intelligence [-]
Les mer
Oslo 5 dager 27 900 kr
20 Oct
20 Oct
GDPR - Certified Data Protection Officer [+]
GDPR - Certified Data Protection Officer [-]
Les mer
1 dag 5 990 kr
På dette kurset går man igjennom alle Excels gode analysemuligheter, ikke minst Pivottabellen og Power Pivot. [+]
Excel Pivot kurs for deg som ønsker god oversikt over store datamengder. Gjennomgang av viktigheten av et korrekt grunnlag, for å kunne benytte de gode analysemulighetene som ligger i Excel. Det blir vist hvordan pivot kan brukes på forskjellige måter, og hvordan dette kan gjøres med dynamiske områder. Det vil også være rom for å demonstrere enkelte funksjoner som kan gjøre rapportering i Pivot bedre. Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Utgangspunktet: listen Få de beste rådene angående listen du skal bruke.   Utgangspunktet: tabellen Se fordeler ved å bruke dynamisk tabell vs. statisk liste.   Pivottabell - begrepsavklaringer Hva er en Pivottabell: Forklaring gis på ord og uttrykk relevant for pivottabellen. Grunnlaget: Grunnlaget, tabellen, bør være bygd opp på en spesiell måte, vi forklarer hvordan. Konsolidering: Vi viser hvordan grunnlaget kan være ulike krysstabeller som sys sammen til en pivottabell. Power Pivot Separate pivotminner: Hvorfor bruke dette?   Oppdatere pivottabell Endring i datakilden: Oppdatering av pivottabellen er viktig å kjenne til. Utvidelse av datakilden: Hva skjer dersom listen utvides enten i bredden eller i høyden. Dynamisk navngiving er en effektiv løsning. En annen metode er å opprette pivottabellen på basis av en liste som er definert som en tabell. Datakilder: Lær hvordan du kan ha flere ulike kilder som basis for pivottabellen, og hvordan disse skal oppdateres ved behov.   Pivottabellutseende Endring av oppsett: Lær hvor enkelt det er å endre oppsette for pivottabellen. Autooppsett: Excel 2010 har mange ulike autoformat. Formatering: I tillegg til formatet på selve pivottabellen, gjennomgår vi også celleformateringen. Sortering: Sorter gjerne tall og eller tekst Filter: Se forskjell på den tradisjonelle måten å filtrere på eller slicer. Skjule/vise: Sentralt når du ønsker å fokusere på deler av en rapport. Gruppering: Tekst, tall eller datoer kan fint grupperes. Nyttig! Vise / skjule delsummer: Praktisk å kjenne til hvordan du aktiverer / deaktiverer delsummer   Beregninger i pivottabell Bestemme ulike sammendrag: I en pivottabell kan du utføre ulike sammendrag. Egendefinert beregninger: Lær hvordan du kan lage nye beregnende felt på basis av eksisterende felt i en pivottabell. Vise data på ulike måter: Feltene kan vises blant annet som prosenter av andre felt, eller tallavvik av andre felt.   Anvendelse av pivottabellen Hent data: vi viser deg ulike metoder for å hente data fra en pivottabell, for bruk i ”vanlige” celler i Excel. Diagram: Lær hvordan du kan lage ulike diagrammer basert på data i pivottabellen   Power Pivot Import av PowerPivot data: Du kan hente data til PowerPivot vindu på ulike måter og fra ulike kilder. Koble data: Lær å opprette relasjoner mellom tabeller Rapporter: Bygg opp pivotrapporter fra relaterte grunnlag Beregninger: Introduksjon til DAX språket 4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti     [-]
Les mer
Oslo Bergen 4 dager 25 900 kr
25 Nov
25 Nov
16 Dec
Advanced Python Development [+]
Advanced Python Development [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo Bergen 4 dager 25 900 kr
30 Sep
30 Sep
11 Nov
Python Programming [+]
Python Programming [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Autodesk 3ds Max er tilpasset arkitekter, ingeniører, designere og visualiseringseksperter, som leveres med en helt unik funksjonalitet for analyse av lysdistribusjon. [+]
Fleksible kurs for fremtiden Ny kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   3ds Max grunnkurs   Lag fotorealistiske presentasjoner av dine designløsninger! Her er et utvalg av temaene du vil lære på kurset: Grunnleggende funksjoner – Transformationer vha. move, rotate og scale Link til og import av DWG- og DXF-filer Lyssetning med standard lys Rendering med Scanline renderen og Mental Ray – Basics Editering av 2D- og 3D-geometri Dette kurset er tilpasset for arkitekter, ingeniører, designere og visualiseringseksperter, og gir en introduksjon til design og visualisering i 3ds MAX. Kurset vil gjøre deg i stand til å arbeide med lys, materialer og kamera i eksisterende 3D CAD/BIM-modeller.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Oslo 2 dager 16 900 kr
18 Sep
18 Sep
04 Dec
SAFe® 6.0 Scrum Master [+]
SAFe® Scrum Master Certification [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to systematically observe services and service components, recording, reporting, and responding to selected changes of state identified as events. [+]
Understand the purpose and key concepts of Monitoring and Event Management, highlighting its importance in proactively managing IT services and detecting events to ensure operational stability.   This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer