IT-kurs
Buskerud
Du har valgt: Gol i Hallingdal
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Gol i Hallingdal ) i IT-kurs
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Nettkurs 365 dager 21 000 kr
Elæring Cisco U. Essentials [+]
Elæring Cisco U. Essentials [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til grunnleggende programmeringsprinsipper som variabler, datatyper, kontrollstrukturer (løkker og beslutninger), matriser (arrays), egendefinerte funksjoner... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: 6 AV 10 øvinger må være godkjent for å kunne gå opp til eksamen. Vurderingsform: En individuell 4-timers nettbasert hjemmeeksamen. Ansvarlig: Svend Andreas Horgen Eksamensdato: 17.12.13 / 20.05.14         Læremål: KUNNSKAPER:Kandidaten:- kan forklare hva et program er- kan redegjøre for grunnleggende byggestener i programmering, så som variabler, kontrollstrukturer, matriser (arrays) og funksjoner- kan analysere en spesiell problemstilling og planlegge hvordan den kan løses generelt med programkode FERDIGHETER:Kandidaten:- kan bruke et .NET-basert utviklingsmiljø i kodeutvikling- kan lage funksjonelle brukergrensesnitt- kan identifisere feil i programkode- kan lage strukturert programkode som løser enkle problemstillinger- kan anvende innebygde funksjoner fra .NET-rammeverket i egen kode GENERELL KOMPETANSE:Kandidaten:- er bevisst på viktigheten av å eliminere feilsituasjoner Innhold:Introduksjon til grunnleggende programmeringsprinsipper som variabler, datatyper, kontrollstrukturer (løkker og beslutninger), matriser (arrays), egendefinerte funksjoner og innebyde funksjoner. Utforme brukergrensesnitt som er fine å se på og enkle å bruke. Feilhåndtering. Strukturere og planlegge koden på en god måte.Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Programmering i Visual Basic 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
2 dager 7 200 kr
Kurset tar for seg oppsett og bruk av WordPress, hvordan du tilpasser og lager din egen layout. [+]
Lær å lage nettsider med WordPress Dette kurset passer for deg som skal designe eller bruke nettsider laget med WordPress og som trenger å forstå hvordan det virker. Du lærer også hvordan du forandrer og tilpasser designmaler, bruker utvidelser, knytter nettsiden mot sosiale medier, og hvordan du søkemotoroptimaliserer nettsidene slik at du blir funnet av brukerene. WordPress er en publiseringsløsning som gjør det enkelt å lage profesjonelle nettsider og det har den fordelen at kunden kan oppdatere og legge inn eget innhold. Dette er verdens største publiseringsverktøy og det finnes utallige designmaler som gjør det mulig for deg å endre utseende på nettsiden uten å endre innholdet. Dette lærer du: Bli kjent med løsningen Opprette nettsider på eget domene Du lærer å lage nettsider ved hjelp av ferdige maler Endre designmaler Publisere nettsider og innlegg Legge inn bilder Gjøre nettsiden din søkbar Bruk av plugins og widgets slik som f. eks: deling i sosiale medier, slideshow, kalenderfunksjon og mye mer Enkel bilde­redigering i WordPress https://igm.no/wordpress-kurs/ [-]
Les mer
2 dager 7 900 kr
Etter fullført kurs skal du kunne tegne illustrasjoner og logoer, klargjøre illustrasjoner for utkjøring og ha oversikt over programmets bruksområder. [+]
Vil du lære å tegne illustrasjoner og logoer til bruk i alle medier? Illustrator tegner vektorgrafikk som kan forstørres ubegrenset, uten å tape kvalitet og kan derfor brukes overalt. Adobe Illustrator er verktøyet for illustratører og grafiske designere, men også et program for deg som vil lage litt enklere illustrasjoner til internett, Power Point og Word. På kurset lærer du å ta utgangspunkt i enkle basisformer og kombinere dem til kompliserte figurer, slik at det blir det lett for alle å tegne. Hvorfor ta dette kurset: Du får en grundig innføring i programmet Du vil lære konkrete tegne- og designoppgaver Du vil lære å redigere/endre Illustrator-filer du mottar Du vil lære å lage illustrasjoner og logoer Du vil lære å lage grafikk for bruk på internett, lesebrett eller mobil Du vil lære effektive arbeidsmetoder Du får kontroll på tegninger med mange elementer og lag Du vil lære om fargebruk og klargjøring av filer for trykk og nett Dette lærer du: Arbeidsmiljøet i programmet Tegning med tegneverktøyene og ved å kombinere enkle grunnformer Redigering og transformering av objekter Innsetting av tekst og bilder Tekstbearbeiding Lage bannerannonser Bruk av farger og forløpninger Lag og gjennomsiktighet [-]
Les mer
Oslo 2 dager 14 000 kr
14 Aug
14 Aug
MB-300: Microsoft Dynamics 365: Core Finance and Operations [+]
MB-300: Microsoft Dynamics 365: Core Finance and Operations [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
03 Sep
22 Oct
03 Dec
Du arver et regneark fra en kollega som har sluttet eller gått over i en annen stilling, eller andre har laget et regneark som du skal bruke og utvikle. Hvordan går du fr... [+]
Kursinnhold Enkle formler Cellereferanser Gi navn til celler og områder Feilkontroll og formelrevisjon Hente data fra andre ark og arbeidsbøker Egendefinerte tallformater Betinget formatering Utklippstavle og avansert innliming   Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer.   Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Nettkurs 3 timer 3 120 kr
I de fleste prosjekter skal bygget/byggene plasseres geografisk i henhold til et koordinatsystem. [+]
NTI leverer opplæring for å forenkle og effektivisere din arbeidshverdag Årlig utdanner over 8.000 personer seg i ulike CAD- og BIM-løsninger hos NTI.Vi har mer enn 70 forskjellige kurs innen fagområdene CAD/BIM-, Industri, Prosess, Plant og Infrastruktur- og dokumenthåndtering, og i snitt har våre 100 konsulenter og instruktører mer enn 10 års erfaring med opplæring og konsulenttjenester. Hvordan få riktig oppsett av koordinater i prosjekt? Dette er et tema NTI merker stor pågang rundt til support, og henvendelsene kommer fra disipliner som byggteknikk, VVS og elektro i tillegg til arkitekt. Det er ofte arkitekten som setter opp koordinatene i Revit. Hvis utgangspunktet er feil, påvirkes dette i alle andre disipliner også. Spesielt der det er krav til at utvekslingsformatet er IFC. På dette online-kurset vil du lære: Forskjellen mellom de ulike koordinatsystemene Hva er et lokalt nullpunkt Sette opp reelle koordinater (Survey) «Best Practice» i oppsett av koordinater fra start Samhandling ved utveksling av filer og koordinater Behandle flere koordinatsystemer i samme prosjekt IFC export/import i forhold til delte koordinater Det kan gå noe tid mellom hver gang du setter opp koordinater, og det er lett å glemme prosessen. Etter gjennomført kurs, får du en «step by step» dokumentasjon, som kan benyttes som oppslagsverk senere.  Kurs på dine betingelser!Ditt firma har kanskje investert i ny CAD-programvare, oppgradert til ny versjon, oppdatert til ny programvare eller dere trenger rett og slett oppfriskning. Da er det på tide å investere i kompetanse for dine ansatte! Kontakt vår kurskoordinator Wenche, telefon 21 40 27 89 eller epost. [-]
Les mer
3 dager 7 900 kr
Etter fullført kurs skal du kunne frilegge, retusjere og sammenkopiere bilder. [+]
Vil du komme igang med Photoshop? På dette kurset lærer du å korrigere farger og kontraster i bilder for å oppnå en bedre kvalitet. Du lærer å retusjere bort uønskede elementer og fjerne rynker. Du lærer å sammenkopiere flere elementer ved hjelp av lag og masker og lagre bilder til ulike medier, med ulik oppløsning og ulike filformater. Når du har vært gjennom dette Photoshop-kurset kan du bearbeide din egen eller andres ide fra skisse til et ferdig bilde. Du kan lagre bildet til det mediet det skal brukes i med høy kvalitet. Dette lærer du: Fjerne bakgrunnen i bildene Fargekorrigering slik at du får spennende og fine bilder Retusjering Sette sammen flere bilder Bruk av masker Jobbe med tekst og form Lagre bilder til ulike medier, med ulik oppløsning og ulike filformater Optimalisering av bilder til web https://igm.no/photoshop-kurs/ [-]
Les mer
Analyse med Pivottabeller og Power Pivot [+]
Dette er et spesialkurs som fokuserer på analyse av store datasett ved hjelp av Pivottabell og Power Pivot, samt formelbasert analyse. Målet er å få frem styrker og svakheter ved de forskjellige metodene, og å se litt på hvilke forutsetninger som påvirker valg av løsning. For å ha utbytte av dette kurser forutsettes at man er vant bruker av Excel. Pivot og Power Pivot blir gjennomgått fra begynnelsen, så man trenger ikke være kjent med disse verktøyene fra før. Betingede formler kan være ganske krevende, så det er en fordel å være litt trygg på formelskriving. I en kurssituasjon blir selvsagt kurset tilpasset deltagernes nivå og forkunnskaper. I kurset gjennomgås bl.a.: Kontroll/gjennomgang av en del sentral funksjonalitet – bl.a. absolutte, relative og blandede referanser. Sammendrag av data fra flere ark i samme eller flere arbeidsbøker, bl.a. gjennomgående summering og tabulering v.hj.a. INDIREKTE-funksjonen. Betingende sammendrag v.hj.a. matriseformler og funksjoner Modifisere datasett med FINN.RAD, FINN.KOLONNE, matriseformler og andre teknikker Pivottabell, hvor vi bl.a. ser på: Sette sammen data fra forskjellige grunnlag før pivotering Vise dataserie på forskjellige måter (sum, gjennomsnitt, prosentfordelt, etc.) Hvordan foreta beregninger rett i pivottabellen, f.ex. inntekter – kostnader = resultat Pivottabell hvor datagrunnlaget er oppdelt i flere forskjellige Pivottabell rett mot en spørring i en database Power Pivot Forskjeller (og likheter) med «vanlig» Pivottabell Når forlater vi den vanlige pivottabellen til fordel for Power Pivot? Fordeler og ulemper med Pivot og Power Pivot. Lage Power Pivot-tabell med data fra flere forskjellige datasett. [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 26 500 kr
29 Sep
29 Sep
27 Oct
AZ-204: Developing Solutions for Microsoft Azure [+]
AZ-204: Developing Solutions for Microsoft Azure [-]
Les mer
Virtuelt klasserom 4 dager 23 000 kr
Python is an object oriented rapid development language deployed in many scenarios in the modern world. [+]
COURSE OVERVIEW   This Python Programming 1 course is designed to give delegates the knowledge to develop and maintain Python scripts using the current version (V3) of Python. There are many similarities between Python V2 and Python V3. The skills gained on this course will allow the delegate to develop their own skills further using Python V2 or V3 to support the development and maintenance of scripts. The Python Programming 1 course comprises sessions dealing with syntax,variables and data types,operators and expressions,conditions and loops,functions,objects,collections,modules and packages,strings,pattern matching,exception handling,binary and text files,and databases. Exercises and examples are used throughout the course to give practical hands-on experience with the techniques covered. TARGET AUDIENCE The Python Programming 1 course course is aimed at those who want to improve their Python programming skills,and for developers/engineers who want to migrate to Python from another language,particularly those with little or no object-oriented knowledge. For those wishing to learn Python and have no previous knowledge of programming,they should look to attend our foundation course Introduction to Programming - Python. COURSE OBJECTIVES This course aims to provide the delegate with the knowledge to be able to produce Python scripts and applications that exploit all core elements of the language including variables,expressions,selection and iteration,functions,objects,collections,strings,modules,pattern matching,exception handling,I/O,and classes. COURSE CONTENT DAY 1 COURSE INTRODUCTION Administration and Course Materials Course Structure and Agenda Delegate and Trainer Introductions SESSION 1: GETTING STARTED About Python Python versions Python documentation Python runtimes Installing Python The REPL shell Python editors SESSION 2: PYTHON SCRIPTS & SYNTAX Script naming Comments Docstring Statements The backslash Code blocks Whitespace Console IO (to enable the writing of simple programs) A first Python program Script execution SESSION 3: VARIABLES & DATA TYPES Literals Identifiers Assignment Numbers (bool,int,float,complex) Binary,octal,and hexadecimal numbers Floating point accuracy Collections (str,list,tuple,set,dict) None Implicit and explicit type conversion (casting) The type function SESSION 4: OPERATORS & EXPRESSIONS Arithmetic Operators Assignment Operators Comparison Operators Logical Operators Membership Operators Bitwise Operators Identity Operators SESSION 5: CONDITIONS & LOOPS Conditional statements (if,elif,else) Nested conditional statements Short hand if/if else Python's alternative to the ternary operator Iterative statements (while,for,else) The range function Iterating over a list Break Continue Nested conditional/iterative statements COURSE CONTENTS - DAY 2 SESSION 6: FUNCTIONS Declaration Invocation Default values for parameters Named arguments args and kwargs Returning multiple values None returned Variable scope Masking and shadowing The pass keyword Recursive functions SESSION 7: OBJECTS AND CLASSES About objects Attributes and the dot notation The dir function Dunder attributes Mutability The id function Pass by reference Introduction to Classes Class Declaration and Instantiation Data attributes Methods Composition SESSION 8: LISTS About lists List syntax including slicing Getting and setting list elements Iterating over a list Checking for the presence of a value The len function List methods incl. append,insert,remove,pop,clear,copy,sort,reverse etc. The del keyword Appending to and combining lists List comprehension SESSION 9: TUPLES About tuples Tuple syntax Getting tuple elements including unpacking Iterating over a tuple Checking for the presence of a value The len function Appending to and combining tuples SESSION 10: SETS About Sets Dictionary syntax Creating,adding and removing set elements Iterating over a set Membership Testing Sorting Copying Set methods incl. union,intersection,difference,symmetric_difference etc. COURSE CONTENTS - DAY 3 SESSION 11: DICTIONARIES About dictionaries Dictionary syntax Getting and setting dictionary elements Iterating over a dictionary (keys,values,and items) Checking for the presence of a key The len function Dictionary methods incl. keys,values,items,get,pop,popitem,clear etc. The del keyword Dictionary comprehension SESSION 12: STRINGS About strings String syntax including slicing Escape characters Triple-quoted strings Concatenation Placeholders The format method Other methods e.g. endswith,find,join,lower,replace,split,startswith,strip,upper etc. A string as a list of bytes SESSION 13: MODULES & PACKAGES About modules Inbuilt modules math,random and platform the dir() and help() functions Creating and using modules the __pycache__ and the .pyc files The module search path Importing modules Namespaces Importing module objects The import wildcard Aliases Importing within a function Executable modules Reloading a module About packages Importing packaged modules Importing packaged module objects Package initialisation Subpackages Referencing objects in sibling packages The Standard Library Installing modules and packages using pip SESSION 14: PATTERN MATCHING About regular expressions Regular expression special characters Raw strings About the re module re module functions incl. match,search,findall,full match,split,sub   COURSE CONTENTS - DAY 4 SESSION 15: EXCEPTION HANDLING About exceptions and exception handling Handling exceptions (try,except,else,finally) Exception types The exception object Raising exceptions Custom exception types Built-in exceptions hierarchy SESSION 16: FILES & THE FILESYSTEM The open function Methods for seeking (seekable,seek) Methods for reading from a file (readable,read,readline,readlines) Iterating over a file Methods for writing to a file (writable,write,writelines) Introduction to context managers Text encoding schemes,codepoints,codespace ASCII and UNICODE (UTF schemes) UTF-8,binary and hexadecimal representations The ord() and chr() functions Binary files,bytes and bytearray I/O layered abstraction. About the os module os module functions incl. getcwd,listdir,mkdir,chdir,remove,rmdir etc. OSError numbers and the errno module SESSION 17: DATABASES The DB-API DP-API implementations Establishing a connection Creating a cursor Executing a query Fetching results Transactions Inserting,updating,and deleting records FOLLOW ON COURSES Python Programming 2  Data Analysis Python  Apache Web Server PHP Programming  PHP & MySQL for Web Development  PHP & MariaDB for Web Development  Perl Programming  Ruby Programming  Introduction to MySQL  Introduction to MariaDB [-]
Les mer
Bedriftsintern 4 dager 32 000 kr
This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a com... [+]
Objectives This course teaches participants the following skills: Design and build data processing systems on Google Cloud Platform Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow Derive business insights from extremely large datasets using Google BigQuery Train, evaluate, and predict using machine learning models using Tensorflow and Cloud ML Leverage unstructured data using Spark and ML APIs on Cloud Dataproc Enable instant insights from streaming data   All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Data Engineering -Explore the role of a data engineer-Analyze data engineering challenges-Intro to BigQuery-Data Lakes and Data Warehouses-Demo: Federated Queries with BigQuery-Transactional Databases vs Data Warehouses-Website Demo: Finding PII in your dataset with DLP API-Partner effectively with other data teams-Manage data access and governance-Build production-ready pipelines-Review GCP customer case study-Lab: Analyzing Data with BigQuery Module 2: Building a Data Lake -Introduction to Data Lakes-Data Storage and ETL options on GCP-Building a Data Lake using Cloud Storage-Optional Demo: Optimizing cost with Google Cloud Storage classes and Cloud Functions-Securing Cloud Storage-Storing All Sorts of Data Types-Video Demo: Running federated queries on Parquet and ORC files in BigQuery-Cloud SQL as a relational Data Lake-Lab: Loading Taxi Data into Cloud SQL Module 3: Building a Data Warehouse -The modern data warehouse-Intro to BigQuery-Demo: Query TB+ of data in seconds-Getting Started-Loading Data-Video Demo: Querying Cloud SQL from BigQuery-Lab: Loading Data into BigQuery-Exploring Schemas-Demo: Exploring BigQuery Public Datasets with SQL using INFORMATION_SCHEMA-Schema Design-Nested and Repeated Fields-Demo: Nested and repeated fields in BigQuery-Lab: Working with JSON and Array data in BigQuery-Optimizing with Partitioning and Clustering-Demo: Partitioned and Clustered Tables in BigQuery-Preview: Transforming Batch and Streaming Data Module 4: Introduction to Building Batch Data Pipelines -EL, ELT, ETL-Quality considerations-How to carry out operations in BigQuery-Demo: ELT to improve data quality in BigQuery-Shortcomings-ETL to solve data quality issues Module 5: Executing Spark on Cloud Dataproc -The Hadoop ecosystem-Running Hadoop on Cloud Dataproc-GCS instead of HDFS-Optimizing Dataproc-Lab: Running Apache Spark jobs on Cloud Dataproc Module 6: Serverless Data Processing with Cloud Dataflow -Cloud Dataflow-Why customers value Dataflow-Dataflow Pipelines-Lab: A Simple Dataflow Pipeline (Python/Java)-Lab: MapReduce in Dataflow (Python/Java)-Lab: Side Inputs (Python/Java)-Dataflow Templates-Dataflow SQL Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer -Building Batch Data Pipelines visually with Cloud Data Fusion-Components-UI Overview-Building a Pipeline-Exploring Data using Wrangler-Lab: Building and executing a pipeline graph in Cloud Data Fusion-Orchestrating work between GCP services with Cloud Composer-Apache Airflow Environment-DAGs and Operators-Workflow Scheduling-Optional Long Demo: Event-triggered Loading of data with Cloud Composer, Cloud Functions, -Cloud Storage, and BigQuery-Monitoring and Logging-Lab: An Introduction to Cloud Composer Module 8: Introduction to Processing Streaming Data Processing Streaming Data Module 9: Serverless Messaging with Cloud Pub/Sub -Cloud Pub/Sub-Lab: Publish Streaming Data into Pub/Sub Module 10: Cloud Dataflow Streaming Features -Cloud Dataflow Streaming Features-Lab: Streaming Data Pipelines Module 11: High-Throughput BigQuery and Bigtable Streaming Features -BigQuery Streaming Features-Lab: Streaming Analytics and Dashboards-Cloud Bigtable-Lab: Streaming Data Pipelines into Bigtable Module 12: Advanced BigQuery Functionality and Performance -Analytic Window Functions-Using With Clauses-GIS Functions-Demo: Mapping Fastest Growing Zip Codes with BigQuery GeoViz-Performance Considerations-Lab: Optimizing your BigQuery Queries for Performance-Optional Lab: Creating Date-Partitioned Tables in BigQuery Module 13: Introduction to Analytics and AI -What is AI?-From Ad-hoc Data Analysis to Data Driven Decisions-Options for ML models on GCP Module 14: Prebuilt ML model APIs for Unstructured Data -Unstructured Data is Hard-ML APIs for Enriching Data-Lab: Using the Natural Language API to Classify Unstructured Text Module 15: Big Data Analytics with Cloud AI Platform Notebooks -What’s a Notebook-BigQuery Magic and Ties to Pandas-Lab: BigQuery in Jupyter Labs on AI Platform Module 16: Production ML Pipelines with Kubeflow -Ways to do ML on GCP-Kubeflow-AI Hub-Lab: Running AI models on Kubeflow Module 17: Custom Model building with SQL in BigQuery ML -BigQuery ML for Quick Model Building-Demo: Train a model with BigQuery ML to predict NYC taxi fares-Supported Models-Lab Option 1: Predict Bike Trip Duration with a Regression Model in BQML-Lab Option 2: Movie Recommendations in BigQuery ML Module 18: Custom Model building with Cloud AutoML -Why Auto ML?-Auto ML Vision-Auto ML NLP-Auto ML Tables [-]
Les mer