IT-kurs
Du har valgt: Hordaland
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Hordaland ) i IT-kurs
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to systematically observe services and service components, recording, reporting, and responding to selected changes of state identified as events. [+]
Understand the purpose and key concepts of Monitoring and Event Management, highlighting its importance in proactively managing IT services and detecting events to ensure operational stability.   This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 2 timer 1 990 kr
Forsiden på området er det første brukerne møter. På dette webinaret lærer du hvordan man kan løfte frem SharePoint-innhold på forsiden via forsideredigering, sam... [+]
Forsiden på området er det første brukerne møter. På dette webinaret lærer du hvordan man kan løfte frem SharePoint-innhold på forsiden via forsideredigering, samt hvordan man lager gode område-forsider generelt. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Forstå SharePoint håndtering av forsider Wiki bibliotek Legge til flere sider Versjonering Områdets startside   Bli kjent med formateringsvalg Generelle sideoppsett Tabeller for å styre layout   Håndtere bilder og grafikk Områdeinnhold   Tilpass webdeler for å løfte frem innhold fra forskjellige kilder Sette inn app-del App-/webdel-spesifike visninger Webdel-side   Eksempler på anvendelse av webdeler Appdel for bibliotek basert på visning Medlemmer Presentere person   [-]
Les mer
Oslo 5 dager 27 900 kr
03 Nov
03 Nov
ISO 27032 Lead Cybersecurity Manager [+]
ISO 27032 Lead Cybersecurity Manager [-]
Les mer
Oslo Trondheim Og 1 annet sted 5 dager 34 000 kr
18 Aug
25 Aug
25 Aug
TOGAF® EA Course Combined [+]
TOGAF® EA Course Combined [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Automatisering og sikring ved hjelp av System Center Cooperation Manager 2012 (SCCM 2012) - Applikasjonsutrulling - Operativ System utrulling - Klient tilstands-monitorer... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Windows server 2008/2012 - god kjennskap om Windows server Innleveringer: Øvinger: 8 av må være godkjent. Personlig veileder: ja Vurderingsform: Eksamen blir arrangert som 2 dagers hjemmeeksamen (start kl 09.00 og innlevering kl 15.00 dagen etter). Hver student får tildelt et virtuelt område. Det skal også leveres en skriftelig begrunnelse for de valg som er foretatt. Hjemmeeksamen, individuell, 2 dager, 0 Ansvarlig: Stein Meisingseth Eksamensdato: 10.12.13 / 13.05.14         Læremål: KUNNSKAPER:Kandidaten:- har innsikt i drift av nettverk basert på Windows Server, programvaredistribusjon og kjenner til hvilke verktøy som kan brukes for administrasjon av virtuelle maskiner og nettverk- kan forklare systemer som kan benyttes til overvåkning og vedlikehold FERDIGHETER:Kandidaten kan:- installere og konfigurere System Center Configuration Manager 2012- automatisere manuelle operasjoner- sikre, oppdatere og overvåke IT-systemer GENERELL KOMPETANSE:Kandidaten har:- perspektiv og kompetanse i å velge riktige og tilpassete driftsløsninger- kompetanse i å formidle driftsterminologi, både muntlig og skriftlig Innhold:- Automatisering og sikring ved hjelp av System Center Cooperation Manager 2012 (SCCM 2012) - Applikasjonsutrulling - Operativ System utrulling - Klient tilstands-monitorering - Programvare oppdateringer - Sikkerhetsbeskyttelse vha Endpoint ProtectionLes mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Microsoft System Center i overvåkning og drift 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Fysiske medier i bruk i lokalnettverk. Nettverkskomponenter. Design av nettverk (nettverk infrastruktur). Trådløse nettverk, design og sikkerhet. Generelt om forskjellige... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: For å kunne gå opp til eksamen må 8 utvalgte øvingsoppgaver være godkjente. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, individuell, 3 timer. Ansvarlig: Arne Bjørn Mikalsen Eksamensdato: 16.12.13 / 19.05.14         Læremål: KUNNSKAPERKandidaten:- kan gjøre rede for de mest brukte teknologiene for lokalnettverk- kan gjøre rede for teknisk oppbygning av nettverk- kan gjøre rede for ulike nettverkskomponenter, deres virkemåte og bruksområde- kan planlegge og vurdere sikkerhet i lokalnettverk FERDIGHETER:Kandidaten:- kan koble til og konfigurere en datamaskin slik at den fungerer i et nettverk med internettoppkobling- kan opprette brukerkontoer, tildele rettigheter, samt administrere nettverk med en ressursdatabase- kan planlegge, implementere og konfigurere et mindre lokalnettverk GENERELL KOMPETANSE:Kandidaten:- har kompetanse til selvstendig både å formidle og å ta i bruk sine kunnskaper og ferdigheter innen emnets tema i en driftssituasjon- kan i en praktisk driftssituasjon, forklare og gjøre bruk av sin kunnskap både innen hvert enkelt tema i faget og på tvers av temaene- kan kommunisere med andre om nettverksløsninger Innhold:Fysiske medier i bruk i lokalnettverk. Nettverkskomponenter. Design av nettverk (nettverk infrastruktur). Trådløse nettverk, design og sikkerhet. Generelt om forskjellige typer nettverksoperativsystem. Introduksjon til Active Directory og eDirectory. Prinsipper for konfigurasjon, installasjon, drift og sikkerhet og driftsfilosofi i lokalnettverk. Introduksjon til virtualisering. Driftsmodeller: Fjerndrift eller ASP (Application Service Provider)Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Drift av lokalnettverk 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Virtualisering med VMware. [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Øvinger: 8 av 12 må være godkjent. Personlig veileder: ja Vurderingsform: Praktisk hjemmeeksamen over 2 dager. Fra 09:00 til 15:00 dagen etter. Rapport leveres i itslearning. Ansvarlig: Stein Meisingseth Eksamensdato: 02.12.13 / 05.05.14         Læremål: Etter å ha gjennomført emnet Virtuelle Tjenere skal studenten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- ser fordeler, økonomiske og praktiske, ved å ta i bruk virtualiseringsteknologien til VMware- kjenner sentrale temaer innen drift av vSphere Infrastructure- forstår hvordan virtualisering er bygd opp FERDIGHETER:Kandidaten:- kan installere og konfigurere VMware vSphere- kan sette opp et cluster i vSphere vCenter- vise ut i fra rapporter gitt i vSphere Client om det trengs mer ressurser i opprettet cluster for dets kjørende virtuelle maskiner- forstår funksjonene vMotion, High Availability (HA) og Distributed Resource Scheduler (DRS)- kan automatisere enkle oppgaver ved bruk av PowerCLI script- kan utføre og- gjenopprette backup av virtuelle maskiner- kjenner til hvordan roller kan tildeles brukere GENERELL KOMPETANSE:Kandidaten:- har kompetanse til å besvare teoretiske problemstillinger innen virtualisering- har kompetanse til selvstendig både å ta i bruk sine kunnskaper og ferdigheter innen emnets tema i en driftssituasjon Innhold:Virtualisering med VMware.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Virtuelle Tjenere 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg   [-]
Les mer
2 dager 7 900 kr
Etter fullført kurs skal du kunne tegne illustrasjoner og logoer, klargjøre illustrasjoner for utkjøring og ha oversikt over programmets bruksområder. [+]
Vil du lære å tegne illustrasjoner og logoer til bruk i alle medier? Illustrator tegner vektorgrafikk som kan forstørres ubegrenset, uten å tape kvalitet og kan derfor brukes overalt. Adobe Illustrator er verktøyet for illustratører og grafiske designere, men også et program for deg som vil lage litt enklere illustrasjoner til internett, Power Point og Word. På kurset lærer du å ta utgangspunkt i enkle basisformer og kombinere dem til kompliserte figurer, slik at det blir det lett for alle å tegne. Hvorfor ta dette kurset: Du får en grundig innføring i programmet Du vil lære konkrete tegne- og designoppgaver Du vil lære å redigere/endre Illustrator-filer du mottar Du vil lære å lage illustrasjoner og logoer Du vil lære å lage grafikk for bruk på internett, lesebrett eller mobil Du vil lære effektive arbeidsmetoder Du får kontroll på tegninger med mange elementer og lag Du vil lære om fargebruk og klargjøring av filer for trykk og nett Dette lærer du: Arbeidsmiljøet i programmet Tegning med tegneverktøyene og ved å kombinere enkle grunnformer Redigering og transformering av objekter Innsetting av tekst og bilder Tekstbearbeiding Lage bannerannonser Bruk av farger og forløpninger Lag og gjennomsiktighet [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This course teaches Azure professionals about the core capabilities of Google Cloud in the four technology pillars: networking, compute, storage, and database. [+]
The course is designed for Azure system administrators, solutions architects, and SysOps administrators who are familiar with Azure features and setup and want to gain experience configuring Google Cloud products immediately.  This course uses lectures, demos, and hands-on labs to show you the similarities and differences between the two platforms and teach you about some basic tasks on Google Cloud. Objectives This course teaches participants the following skills: Identify Google Cloud counterparts for Azure IaaS, Azure PaaS, Azure SQL, Azure Blob Storage, Azure Application Insights, and Azure Data Lake Configure accounts, billing, projects, networks, subnets, firewalls, VMs, disks, auto-scaling, load balancing, storage, databases, IAM, and more Manage and monitor applications Explain feature and pricing model differences All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud -Explain the advantages of Google Cloud-Define the components of Google’s network infrastructure, including points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud -Identify the purpose of projects on Google Cloud-Understand how Azure’s resource hierarchy differs from Google Cloud’s-Understand the purpose of and use cases for Identity and Access Management-Understand how Azure AD differs from Google Cloud IAM-List the methods of interacting with Google Cloud-Launch a solution using Cloud Marketplace Module 3: Virtual Machines in the Cloud -Identify the purpose and use cases for Google Compute Engine-Understand the basics of networking in Google Cloud-Understand how Azure VPC differs from Google VPC-Understand the similarities and differences between Azure VM and Google Compute Engine-Understand how typical approaches to load-balancing in Google Cloud differ from those in AzureDeploy applications using Google Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Cloud Storage, Cloud SQL, Cloud Bigtable and Cloud Datastore-Understand how Azure Blob compares to Cloud Storage-Compare Google Cloud’s managed database services with Azure SQL-Learn how to choose among the various storage options on Google Cloud-Load data from Cloud Storage into BigQuery Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers-Identify the purpose of and use cases for Google Container Engine and Kubernetes-Understand how Azure Kubernetes Service differs from Google Kubernetes Engine-Provision a Kubernetes cluster using Kubernetes Engine-Deploy and manage Docker containers using kubectl Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine-Contrast the App Engine Standard environment with the App Engine Flexible environment-Understand how App Engine differs from Azure App Service-Understand the purpose of and use cases for Google Cloud Endpoints Module 7: Developing, Deploying and Monitoring in the Cloud -Understand options for software developers to host their source code-Understand the purpose of template-based creation and management of resources-Understand how Cloud Deployment Manager differs from Azure Resource Manager-Understand the purpose of integrated monitoring, alerting, and debugging-Understand how Google Monitoring differs from Azure Application Insights and Azure Log Analytics-Create a Deployment Manager deployment-Update a Deployment Manager deployment-View the load on a VM instance using Google Monitoring Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms-Understand how Google Cloud BigQuery differs from Azure Data Lake-Understand how Google Cloud Pub/Sub differs from Azure Event Hubs and Service Bus-Understand how Google Cloud’s machine-learning APIs differ from Azure’s-Load data into BigQuery from Cloud Storage-Perform queries using BigQuery to gain insight into data Module 9: Summary and Review -Review the products that make up Google Cloud and remember how to choose among them-Understand next steps for training and certification-Understand, at a high level, the process of migrating from Azure to Google Cloud [-]
Les mer
Oslo 2 dager 16 900 kr
25 Sep
25 Sep
18 Dec
htWeb Security for Developers [+]
httpWeb Security for Developers [-]
Les mer
Oslo 3 dager 17 900 kr
10 Nov
10 Nov
COBIT 2019 Foundation [+]
COBIT 2019 Foundation [-]
Les mer