IT-kurs
Telemark
Du har valgt: Kvitseid
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Kvitseid ) i IT-kurs
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
5 dager 16 200 kr
kurs for deg som skal jobbe med salg og markedsføring på nett [+]
Digital markedsføring   Dette er kurs for deg som skal jobbe med salg og markedsføring på nett. I løpet av 5 kursdager  vil du få god digital kompetanse, lære hva som er godt innhold og tilrettelegge dette for deling på nett. Du skal lære å engasjere kundene dine, lage godt innhold, optimalisere nettsidene for søk på nett, samt bruke google analytics for analyse av trafikken på nettstedet ditt. Etter kurset skal du være i stand til å planlegge og gjenomføre digital markedsføring, kartlegge og optimalisere underveis, og få relevant økt trafikk og konvertering på dine nettsider. Pris kr. 16200,- kurs er fra kl. 09 - 15. Kurs start 10. mai, digital markedsføring: Digital strategi, 10. mai Sosiale medier og innholdsmarkedsføring, 11. mai Skriv gode tekster og nettsider, 1. juni Google Analytics, 2. juni SEO – Søkemotoroptimalisering, 3. juni       [-]
Les mer
Bedriftsintern 1 dag 7 500 kr
Data science og maskinlæring er blitt en viktig drivkraft bak mange forretnings beslutninger. Men fortsatt er mange usikre på hva begrepene innebærer og hvilke muligheter... [+]
Dette kurset tilbys som bedriftsinternt kurs   Maskinlæring handler om sette datamaskiner i stand til å lære fra og utvikle atferd basert på data. Det vil si at en datamaskin kan løse en oppgave den ikke er eksplisitt programmert for å håndtere. I stedet er den i stand til å automatisk lære gjenkjenning av komplekse mønstre i data og gjøre beslutninger basert på dette disse. Maskinlæring gir store muligheter, men mange bedrifter har problemer med å ta teknologien i bruk. Nøyaktig hvilke oppgaver kan maskinlæring utføre, og hvordan kommer man i gang? Dette kurset gir oversikt over mulighetene som ligger i maskinlæring, og hvordan i tillegg til kunnskap om hvordan teknologien kan løse oppgaver og skape resultater i praksis. Hva er maskinlæring, datavitenskap og kunstig intelligens og hvordan det er relatert til statistikk og dataanalyse? Hvordan å utvinne kunnskap fra dataene dine? Hva betyr Big data og hvordan analyseres det? Hvor og hvordan skal du bruke maskinlæring til dine daglige forretningsproblemer? Hvordan bruke datamønstre til å ta avgjørelser og spådommer med eksempler fra den virkelige verden? Hvilke typer forretningsproblemer kan en maskinen lære å håndtere Muligheter som maskinlæring gir din bedrift Hva er de teoretiske aspekter på metoder innen maskinlæring? Hvilke ML-metoder som er relevante for ulike problemstillinger innen dataanalyse? Hvordan evaluere styrker og svakheter mellom disse algoritmene og velge den beste? Anvendt data science og konkrete kunde eksempler i praksis   Målsetning Kurset gir kunnskap om hvordan maskinlæring kan løse et bestemt problem og hvilke metoder som egner seg i en gitt situasjon. Du blir i stand til å kan skaffe deg innsikt i data, og vil kunne identifisere egenskapene som representerer dem best. Du kjenner de viktigste maskinlæringsalgoritmene og hvilke metoder som evaluerer ytelsen deres best. Dette gir grunnlag for kontinuerlig forbedring av løsninger basert på maskinlæring.   [-]
Les mer
Virtuelt eller personlig 4 dager 7 950 kr
Datatilsynet har sett at det å ha en person med kunnskap om og fokus på personvern i en virksomhet kan gjøre en stor forskjell. [+]
Mange har blitt mer og mer oppmerksomme på de rettighetene de har når det kommer til hvordan opplysninger om dem behandles. Enten du er ansatt, kunde, pasient eller en som surfer på internett, så ønsker du at dine personopplysninger skal bli behandlet med respekt og fortrolighet. Datatilsynet har sett at det å ha en person med kunnskap om og fokus på personvern i en virksomhet kan gjøre en stor forskjell. Våre instruktører har mange års erfaring innen databehandling og it-systemer sin håndtering av personopplysninger. Kurset vil derfor gi deg innsikt i hvordan personopplysningsloven med GDPR får en praktisk anvendelse i din virksomhet. Lover og regler blir grundig forklart og eksemplifisert. Det blir oppgaveløsning med praktiske caser og faktiske hendelser, for eksempel lovlig bruk av samtykke, brudd på personopplysningssikkerheten, mv. Følgende emner blir blant annet gjennomgått:– Saklig og geografisk virkeområde for GDPR– Forskjellen på behandlingsansvarlig og databehandler– De grunnleggende prinsippene som loven bygger på– Lovlige hjemler som behandlingsgrunnlag– Respekt for personers rettigheter– Vurdering av personvernkonsekvenser (DPIA)– Utarbeidelse av behandlingsprotokoll– Krav til databehandleravtaler– Personvernombudets oppgaver– Personopplysningssikkerheten og risikovurdering – Overføring av data (utenfor EU/EØS) [-]
Les mer
Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Klasserom + nettkurs 4 dager 21 000 kr
This course teaches IT Professionals how to manage core Windows Server workloads and services using on-premises, hybrid, and cloud technologies. [+]
COURSE OVERVIEW The course teaches IT Professionals how to implement and manage on-premises and hybrid solutions such as identity, management, compute, networking, and storage in a Windows Server hybrid environment. TARGET AUDIENCE This four-day course is intended for Windows Server Hybrid Administrators who have experience working with Windows Server and want to extend the capabilities of their on-premises environments by combining on-premises and hybrid technologies. Windows Server Hybrid Administrators implement and manage on-premises and hybrid solutions such as identity, management, compute, networking, and storage in a Windows Server hybrid environment. COURSE OBJECTIVES After you complete this course you will be able to: Use administrative techniques and tools in Windows Server. Identify tools used to implement hybrid solutions, including Windows Admin Center and PowerShell. Implement identity services in Windows Server. Implement identity in hybrid scenarios, including Azure AD DS on Azure IaaS and managed AD DS. Integrate Azure AD DS with Azure AD. Manage network infrastructure services. Deploy Azure VMs running Windows Server, and configure networking and storage. Administer and manage Windows Server IaaS Virtual Machine remotely. Manage and maintain Azure VMs running Windows Server. Configure file servers and storage. Implement File Services in hybrid scenarios, using Azure Files and Azure File Sync. COURSE CONTENT Module 1: Identity services in Windows Server This module introduces identity services and describes Active Directory Domain Services (AD DS) in a Windows Server environment. The module describes how to deploy domain controllers in AD DS, as well as Azure Active Directory (AD) and the benefits of integrating Azure AD with AD DS. The module also covers Group Policy basics and how to configure group policy objects (GPOs) in a domain environment. Lessons for module 1 Introduction to AD DS Manage AD DS domain controllers and FSMO roles Implement Group Policy Objects Manage advanced features of AD DS Lab : Implementing identity services and Group Policy Deploying a new domain controller on Server Core Configuring Group Policy After completing module 1, students will be able to: Describe AD DS in a Windows Server environment. Deploy domain controllers in AD DS. Describe Azure AD and benefits of integrating Azure AD with AD DS. Explain Group Policy basics and configure GPOs in a domain environment. Module 2: Implementing identity in hybrid scenarios This module discusses how to configure an Azure environment so that Windows IaaS workloads requiring Active Directory are supported. The module also covers integration of on-premises Active Directory Domain Services (AD DS) environment into Azure. Finally, the module explains how to extend an existing Active Directory environment into Azure by placing IaaS VMs configured as domain controllers onto a specially configured Azure virtual network (VNet) subnet. Lessons for module 2 Implement hybrid identity with Windows Server Deploy and manage Azure IaaS Active Directory domain controllers in Azure Lab : Implementing integration between AD DS and Azure AD Preparing Azure AD for AD DS integration Preparing on-premises AD DS for Azure AD integration Downloading, installing, and configuring Azure AD Connect Verifying integration between AD DS and Azure AD Implementing Azure AD integration features in AD DS After completing module 2, students will be able to: Integrate on-premises Active Directory Domain Services (AD DS) environment into Azure. Install and configure directory synchronization using Azure AD Connect. Implement and configure Azure AD DS. Implement Seamless Single Sign-on (SSO). Implement and configure Azure AD DS. Install a new AD DS forest on an Azure VNet. Module 3: Windows Server administration This module describes how to implement the principle of least privilege through Privileged Access Workstation (PAW) and Just Enough Administration (JEA). The module also highlights several common Windows Server administration tools, such as Windows Admin Center, Server Manager, and PowerShell. This module also describes the post-installation confguration process and tools available to use for this process, such as sconfig and Desired State Configuration (DSC). Lessons for module 3 Perform Windows Server secure administration Describe Windows Server administration tools Perform post-installation configuration of Windows Server Just Enough Administration in Windows Server Lab : Managing Windows Server Implementing and using remote server administration After completing module 3, students will be able to: Explain least privilege administrative models. Decide when to use privileged access workstations. Select the most appropriate Windows Server administration tool for a given situation. Apply different methods to perform post-installation configuration of Windows Server. Constrain privileged administrative operations by using Just Enough Administration (JEA). Module 4: Facilitating hybrid management This module covers tools that facilitate managing Windows IaaS VMs remotely. The module also covers how to use Azure Arc with on-premises server instances, how to deploy Azure policies with Azure Arc, and how to use role-based access control (RBAC) to restrict access to Log Analytics data. Lessons for module 4 Administer and manage Windows Server IaaS virtual machines remotely Manage hybrid workloads with Azure Arc Lab : Using Windows Admin Center in hybrid scenarios Provisioning Azure VMs running Windows Server Implementing hybrid connectivity by using the Azure Network Adapter Deploying Windows Admin Center gateway in Azure Verifying functionality of the Windows Admin Center gateway in Azure After completing module 4, students will be able to: Select appropriate tools and techniques to manage Windows IaaS VMs remotely. Explain how to onboard on-premises Windows Server instances in Azure Arc. Connect hybrid machines to Azure from the Azure portal. Use Azure Arc to manage devices. Restrict access using RBAC. Module 5: Hyper-V virtualization in Windows Server This modules describes how to implement and configure Hyper-V VMs and containers. The module covers key features of Hyper-V in Windows Server, describes VM settings, and how to configure VMs in Hyper-V. The module also covers security technologies used with virtualization, such as shielded VMs, Host Guardian Service, admin-trusted and TPM-trusted attestation, and Key Protection Service (KPS). Finally, this module covers how to run containers and container workloads, and how to orchestrate container workloads on Windows Server using Kubernetes. Lessons for module 5 Configure and manage Hyper-V Configure and manage Hyper-V virtual machines Secure Hyper-V workloads Run containers on Windows Server Orchestrate containers on Windows Server using Kubernetes Lab : Implementing and configuring virtualization in Windows Server Creating and configuring VMs Installing and configuring containers After completing module 5, students will be able to: Install and configure Hyper-V on Windows Server. Configure and manage Hyper-V virtual machines. Use Host Guardian Service to protect virtual machines. Create and deploy shielded virtual machines. Configure and manage container workloads. Orchestrate container workloads using a Kubernetes cluster. Module 6: Deploying and configuring Azure VMs This module describes Azure compute and storage in relation to Azure VMs, and how to deploy Azure VMs by using the Azure portal, Azure CLI, or templates. The module also explains how to create new VMs from generalized images and use Azure Image Builder templates to create and manage images in Azure. Finally, this module describes how to deploy Desired State Configuration (DSC) extensions, implement those extensions to remediate noncompliant servers, and use custom script extensions. Lessons for module 6 Plan and deploy Windows Server IaaS virtual machines Customize Windows Server IaaS virtual machine images Automate the configuration of Windows Server IaaS virtual machines Lab : Deploying and configuring Windows Server on Azure VMs Authoring Azure Resource Manager (ARM) templates for Azure VM deployment Modifying ARM templates to include VM extension-based configuration Deploying Azure VMs running Windows Server by using ARM templates Configuring administrative access to Azure VMs running Windows Server Configuring Windows Server security in Azure VMs After completing module 6, students will be able to: Create a VM from the Azure portal and from Azure Cloud Shell. Deploy Azure VMs by using templates. Automate the configuration of Windows Server IaaS VMs. Detect and remediate noncompliant servers. Create new VMs from generalized images. Use Azure Image Builder templates to create and manage images in Azure. Module 7: Network infrastructure services in Windows Server This module describes how to implement core network infrastructure services in Windows Server, such as DHCP and DNS. This module also covers how to implement IP address managment and how to use Remote Access Services. Lessons for module 7 Deploy and manage DHCP Implement Windows Server DNS Implement IP address management Implement remote access Lab : Implementing and configuring network infrastructure services in Windows Server Deploying and configuring DHCP Deploying and configuring DNS After completing module 7, students will be able to: Implement automatic IP configuration with DHCP in Windows Server. Deploy and configure name resolution with Windows Server DNS. Implement IPAM to manage an organization’s DHCP and DNS servers, and IP address space. Select, use, and manage remote access components. Implement Web Application Proxy (WAP) as a reverse proxy for internal web applications. Module 8: Implementing hybrid networking infrastructure This module describes how to connect an on-premises environment to Azure and how to configure DNS for Windows Server IaaS virtual machines. The module covers how to choose the appropriate DNS solution for your organization’s needs, and run a DNS server in a Windows Server Azure IaaS VM. Finally, this module covers how to manage manage Microsoft Azure virtual networks (VNets) and IP address configuration for Windows Server infrastructure as a service (IaaS) virtual machines. Lessons for module 8 Implement hybrid network infrastructure Implement DNS for Windows Server IaaS VMs Implement Windows Server IaaS VM IP addressing and routing Lab : Implementing Windows Server IaaS VM networking Implementing virtual network routing in Azure Implementing DNS name resolution in Azure After completing module 8, students will be able to: Implement an Azure virtual private network (VPN). Configure DNS for Windows Server IaaS VMs. Run a DNS server in a Windows Server Azure IaaS VM. Create a route-based VPN gateway using the Azure portal. Implement Azure ExpressRoute. Implement an Azure wide area network (WAN). Manage Microsoft Azure virtual networks (VNets). Manage IP address configuration for Windows Server IaaS virtual machines (VMs). Module 9: File servers and storage management in Windows Server This module covers the core functionality and use cases of file server and storage management technologies in Windows Server. The module discusses how to configure and manage the Windows File Server role, and how to use Storage Spaces and Storage Spaces Direct. This module also covers replication of volumes between servers or clusters using Storage Replica. Lessons for module 9 Manage Windows Server file servers Implement Storage Spaces and Storage Spaces Direct Implement Windows Server Data Deduplication Implement Windows Server iSCSI Implement Windows Server Storage Replica Lab : Implementing storage solutions in Windows Server Implementing Data Deduplication Configuring iSCSI storage Configuring redundant Storage Spaces Implementing Storage Spaces Direct After completing module 9, students will be able to: Configure and manage the Windows Server File Server role. Protect data from drive failures using Storage Spaces. Increase scalability and performance of storage management using Storage Spaces Direct. Optimize disk utilization using Data DeDuplication. Configure high availability for iSCSI. Enable replication of volumes between clusters using Storage Replica. Use Storage Replica to provide resiliency for data hosted on Windows Servers volumes. Module 10: Implementing a hybrid file server infrastructure This module introduces Azure file services and how to configure connectivity to Azure Files. The module also covers how to deploy and implement Azure File Sync to cache Azure file shares on an on-premises Windows Server file server. This module also describes how to manage cloud tiering and how to migrate from DFSR to Azure File Sync. Lessons for module 10 Overview of Azure file services Implementing Azure File Sync Lab : Implementing Azure File Sync Implementing DFS Replication in your on-premises environment Creating and configuring a sync group Replacing DFS Replication with File Sync–based replication Verifying replication and enabling cloud tiering Troubleshooting replication issues After completing module 10, students will be able to: Configure Azure file services. Configure connectivity to Azure file services. Implement Azure File Sync. Deploy Azure File Sync Manage cloud tiering. Migrate from DFSR to Azure File Sync.   [-]
Les mer
Virtuelt klasserom 3 dager 22 500 kr
30 Sep
02 Dec
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual CourseThe course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams, you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture    KursinnholdDette kurset forklarer det grunnleggende i softwaretesting. Det er basert på ISTQB- pensum og er akkreditert av BCS.    Kurset inneholder øvelser, prøveeksamener og spill for å fremheve sentrale deler av pensum. Dette sammen med kursmateriell og presentasjoner vil bistå i forståelse av begreper og metoder som blir presentert.   Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt   «Særs godt kurs med mye fokus på praktiske oppgaver som gjør læring vesentlig lettere. Engasjert kursleder hjelper også. Kursleder starter på et nivå som alle føler seg komfortabel med.» Alexander Røstum Course content Fundamentals of Testing This section looks at why testing is necessary, what testing is, and explains general testing principles, the fundamental test process, and psychological aspects of testing.   Skills Gained • Learn about the differences between the testing levels and targets• Know how to apply both black and white box approaches to all levels of testing• Understand the differences between the various types of review and be aware of Static Analysis• Learn aspects of test planning, estimation, monitoring and control• Communicate better through understanding standard definitions of terms• Gain knowledge of the different types of testing tools and the best way of implementing those tools   Testing throughout the software lifecycle Explains the relationship between testing and life cycle development models, including the V-model and iterative development. Outlines four levels of testing:• Component testing• Integration testing• System testing• Acceptance testing Describes four test types, the targets of testing:• functional• non-functional characteristics• structural• change-related Outlines the role of testing in maintenance.   Static Techniques Explains the differences between the various types of review, and outlines the characteristics of a formal review. Describes how static analysis can find defects.   Test Design Techniques This section explains how to identify test conditions (things to test) and how to design test cases and procedures. It also explains the difference between white and black box testing. The following techniques are described in some detail with practical exercises :• Equivalence Partitioning• Boundary Value Analysis• Decision Tables• State Transition testing• Statement and Decision testingIn addition, use case testing and experience-based testing (such as exploratory testing) are described, and advice is given on choosing techniques.   Test Management This section looks at organisational implications for testing and describes test planning and estimation, test monitoring and control. The relationship of testing and risk is covered,and configuration management and incident management.   Tool Support for Testing Different types of tool support for testing are described throughout the course. This session summarises them, and discusses how to use them effectively and how best to introduce a new tool.   The Exam The ISTQB Foundation exam is a 1-hour, 40 question multiple choice exam. There is an extra 15 minutes allowed for candidates whose first language is not English.The pass mark is 65% (26/40) and there are no pre requisites to taking this exam.The exam is a remote proctored exam [-]
Les mer
5 dager 20 000 kr
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [+]
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 2 timer 549 kr
Visste du at det er mulig å lage et interaktivt PDF-dokument i Adobe InDesign? Det er faktisk ikke så vanskelig når du først kommer i gang. Et interaktivt PDF-dokument ka... [+]
Visste du at det er fullt mulig å lage et interaktivt PDF-dokument i Adobe InDesign? Faktisk er det ikke så vanskelig når du først har forstått hvordan det fungerer. Et interaktivt PDF-dokument kan inkludere elementer som bokmerker, destinasjoner, linker, knapper, tekstfelt, kombinasjonsbokser, avkrysningsbokser, radioknapper, og mye mer. I dette kurset vil Espen Faugstad guide deg gjennom prosessen med å lage et interaktivt PDF-dokument ved hjelp av Adobe InDesign CC 2020. Du vil lære å opprette bokmerker, destinasjoner, linker og knapper. I tillegg vil du lære å utvikle utfyllingsskjemaer som inkluderer tekstfelt, kombinasjonsbokser, avkrysningsbokser, radioknapper og mer. Til slutt vil du bli veiledet gjennom eksporteringen av prosjektet som en PDF-fil. Dette kurset er delt inn i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Interaktivitet Kapittel 3: Skjema Kapittel 4: Eksportere Kapittel 5: Avslutning Gjennom kurset vil du få de nødvendige ferdighetene for å skape interaktive PDF-dokumenter som kan være nyttige i en rekke sammenhenger, inkludert presentasjoner, rapporter, og mer.   Varighet: 1 time og 37 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Innføring i datamodellering med EER og UML-notasjon. Design av relasjonsdatabase inkl. bruk av nøkler, referanseintegritet og enkel normalisering. Databasedefinisjon (DDL... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: IT Introduksjon eller tilsvarende. Innleveringer: Øvinger: 8 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 3 timer Ansvarlig: Tore Mallaug Eksamensdato: 09.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten skal:- kjenne sentrale begreper innen databaser og datamodellering, og kan gjøre rede for disse- forstå hvordan en relasjonsdatabase er bygd opp ved å se på relasjonene (tabellene) og tilhørende nøkler- forstå (tolke) et (E)ER-diagram modellert i fagets gjeldende notasjon, og vite hvordan dette kan oversettes til relasjonsmodellen- gjøre rede for hvordan databaser kan fungere i en klient/tjener-arkitektur. FERDIGHETER:Kandidaten skal kunne:- tegne sitt eget (E)ER-diagram for å oppnå en god databasestruktur- lage sin egen normaliserte relasjonsdatabase med nøkler og referanseintegritet, og opprette databasen i et valgt databaseverktøy (databasesystem)- utføre SQL-spørringer mot en gitt database- lage en relasjonsdatabase som støtter opp om funksjonaliteten til et gitt grafisk brukergrensesnitt GENERELL KOMPETANSEKandidaten- viser en bevisst holdning til strukturell lagring og representasjon av data i et informasjonssystem- viser en bevisst holdning til databasedesign for å unngå unødvendig dobbeltlagring av data i en database Innhold:Innføring i datamodellering med EER og UML-notasjon. Design av relasjonsdatabase inkl. bruk av nøkler, referanseintegritet og enkel normalisering. Databasedefinisjon (DDL) og datamanipulering (DML) i SQL. Bruk av et valgt databaseverktøy (MySQL), se sammenhengen mellom datamodell, databaseverktøy og applikasjon / web-grensesnitt (klient/tjener -arkitektur).Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Databaser 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
Virtuelt klasserom 2 dager 8 900 kr
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan ... [+]
Kursinstruktør   Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer. Kursinstruktør   Jonny Austad Jonny Austad er utdannet som Adjunkt og har jobbet som lærer og instruktør siden 1989. Han har dessuten jobbet mye med support og drifting av nettverk og vet som oftest hva som er vanlige problemer ute i bedriftene. Han var den første Datakort-læreren i landet (høsten 1997), og har Office-pakken med spesielt Excel som sitt hjertebarn. Jonny er en meget hyggelig og utadvendt person som elsker å undervise med smarte løsninger på problemer samt vise smarte tips og triks i de ulike programmene. Kursinnhold Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Bruk av stiler gir profesjonelle og flotte dokumenter. Lær å lage innholdsfortegnelse, stikkordliste og figurliste automatisk. Profesjonelt sideoppsett med spalter, marger, sidefarger, sidekantlinjer og dokumenttemaer. Auto korrektur, byggeblokker, egenskaper og felt gjør det enklere å gjenbruke tekst. Flere deldokumenter kan samles i et hoved dokument ved hjelp av hoveddokumentvisning. I lange dokumenter kan du ha uliketopp- og bunntekster og selv bestemme side nummerering. For å friske opp et dokument kan du sette inn utklipp, figurer, SmartArt og diagram. Med tekstbokser kan du presentere sitater eller sammendrag fra dokumentet. Tabeller kan brukes til å presentere informasjon på en oversiktlig måte men kan også sorteres og inneholde beregninger. Maler brukes for å sikre at dokumenter av samme type får en ensartet formatering. Felt, innholdskontroller og skjemakontroller kan settes inn for å effektivisere bruken av maler. Med makroer kan du effektivisere avanserte oppgaver som består av serie med handlinger. Med fletting kan du masseprodusere brev, konvolutter, etiketter og e-post. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Word erfaring som de gjerne deler med deg! Meld deg på Word-kurs allerede i dag og sikre deg plass! Lær deg: behandling av stiler rask og enkel opprettelse av innholdsfortegnelse sette inn forsider samarbeid om felles dokument spalter beregninger i tabeller innsetting av diagram sett inn bilder og bildetekst grafikk og tegning maler og skjema bruk av makroer integrasjon med Excel og andre programmer [-]
Les mer