IT-kurs
Telemark
Du har valgt: Nome
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Nome ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led class provides an overview of Google Cloud Platform products and services. Through a combination of presentations and hands-on labs, participa... [+]
Objectives This course teaches participants the following skills: Identify the purpose and value of each of the Google Cloud Platform products and services Interact with Google Cloud Platform services Describe ways in which customers have used Google Cloud Platform Choose among and use application deployment environments on Google Cloud Platform: Google App Engine, Google Kubernetes Engine, and Google Compute Engine Choose among and use Google Cloud Platform storage options: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore Make basic use of BigQuery, Google’s managed data warehouse for analytics Make basic use of Cloud Deployment Manager, Google’s tool for creating and managing cloud resources through templates Make basic use of Google Stackdriver, Google’s monitoring, logging, and diagnostics system All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud Platform -Explain the advantages of Google Cloud Platform-Define the components of Google's network infrastructure, including: Points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud Platform -Identify the purpose of projects on Google Cloud Platform-Understand the purpose of and use cases for Identity and Access Management-List the methods of interacting with Google Cloud Platform-Lab: Getting Started with Google Cloud Platform Module 3: Virtual Machines and Networks in the Cloud -Identify the purpose of and use cases for Google Compute Engine.-Understand the various Google Cloud Platform networking and operational tools and services.-Lab: Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore.-Learn how to choose between the various storage options on Google Cloud Platform.-Lab: Cloud Storage and Cloud SQL Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers.-Identify the purpose of and use cases for Google Kubernetes Engine and Kubernetes.-Lab: Kubernetes Engine Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine.-Contrast the App Engine Standard environment with the App Engine Flexible environment.-Understand the purpose of and use cases for Google Cloud Endpoints.-Lab: App Engine Module 7: Developing, Deploying, and Monitoring in the Cloud -Understand options for software developers to host their source code.-Understand the purpose of template-based creation and management of resources.-Understand the purpose of integrated monitoring, alerting, and debugging.-Lab: Deployment Manager and Stackdriver Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms.-Lab: BigQuery [-]
Les mer
Oslo 5 dager 46 000 kr
08 Sep
10 Nov
10 Nov
https://www.glasspaper.no/kurs/sise-implementing-and-configuring-cisco-identity-services-engine/ [+]
SISE: Implementing and Configuring Cisco Identity Services Engine [-]
Les mer
Nettkurs 2 timer 1 990 kr
Filer i SharePoint lagres i bibliotek. Her tar vi en grundig gjennomgang av bibliotek og tilpasningsmuligheter for disse, som versjonering, maler og Office-integrasjon. [+]
Filer i SharePoint lagres i bibliotek. Her tar vi en grundig gjennomgang av bibliotek og tilpasningsmuligheter for disse, som versjonering, maler og Office-integrasjon. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Om bibliotek Møt biblioteksmalene i SharePoint Opplasting, nedlasting Office-programmene og bibliotek Områdepapirkurv   Tilpasse bibliotek Endre Office-mal for et bibliotek Tilpass kolonner og metadata   Tips til bibliotek Bruke kolonner i Word Bibliotek i Windows Utforsker   Utvidet om bibliotek Gjennomgang av versjonering Bli kjent med godkjenning Arkivering og Send til   Veien videre Introduksjon til innholdstyper Introduksjon til dokumentsenter og innholds-sortering 3 gode grunner til å delta 1. Møt SharePoint sine bibliotek-apper og lær måter å åpne og lagre i bibliotek og håndtere innholdet 2. Forstå mer om versjonering, godkjenning og arkivering 3. Bli kjent med dokumentsenter og innholds-sortering   [-]
Les mer
Virtuelt klasserom 3 dager 22 500 kr
30 Sep
02 Dec
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual CourseThe course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams, you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture    KursinnholdDette kurset forklarer det grunnleggende i softwaretesting. Det er basert på ISTQB- pensum og er akkreditert av BCS.    Kurset inneholder øvelser, prøveeksamener og spill for å fremheve sentrale deler av pensum. Dette sammen med kursmateriell og presentasjoner vil bistå i forståelse av begreper og metoder som blir presentert.   Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt   «Særs godt kurs med mye fokus på praktiske oppgaver som gjør læring vesentlig lettere. Engasjert kursleder hjelper også. Kursleder starter på et nivå som alle føler seg komfortabel med.» Alexander Røstum Course content Fundamentals of Testing This section looks at why testing is necessary, what testing is, and explains general testing principles, the fundamental test process, and psychological aspects of testing.   Skills Gained • Learn about the differences between the testing levels and targets• Know how to apply both black and white box approaches to all levels of testing• Understand the differences between the various types of review and be aware of Static Analysis• Learn aspects of test planning, estimation, monitoring and control• Communicate better through understanding standard definitions of terms• Gain knowledge of the different types of testing tools and the best way of implementing those tools   Testing throughout the software lifecycle Explains the relationship between testing and life cycle development models, including the V-model and iterative development. Outlines four levels of testing:• Component testing• Integration testing• System testing• Acceptance testing Describes four test types, the targets of testing:• functional• non-functional characteristics• structural• change-related Outlines the role of testing in maintenance.   Static Techniques Explains the differences between the various types of review, and outlines the characteristics of a formal review. Describes how static analysis can find defects.   Test Design Techniques This section explains how to identify test conditions (things to test) and how to design test cases and procedures. It also explains the difference between white and black box testing. The following techniques are described in some detail with practical exercises :• Equivalence Partitioning• Boundary Value Analysis• Decision Tables• State Transition testing• Statement and Decision testingIn addition, use case testing and experience-based testing (such as exploratory testing) are described, and advice is given on choosing techniques.   Test Management This section looks at organisational implications for testing and describes test planning and estimation, test monitoring and control. The relationship of testing and risk is covered,and configuration management and incident management.   Tool Support for Testing Different types of tool support for testing are described throughout the course. This session summarises them, and discusses how to use them effectively and how best to introduce a new tool.   The Exam The ISTQB Foundation exam is a 1-hour, 40 question multiple choice exam. There is an extra 15 minutes allowed for candidates whose first language is not English.The pass mark is 65% (26/40) and there are no pre requisites to taking this exam.The exam is a remote proctored exam [-]
Les mer
Oslo 1 dag 9 900 kr
22 Sep
22 Sep
01 Dec
ITIL® 4 Practitioner: Change enablement [+]
ITIL® 4 Practitioner: Change Enablement [-]
Les mer
5 dager 20 000 kr
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [+]
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [-]
Les mer
Virtuelt klasserom 3 timer 3 400 kr
Å lage gode skjemaer er ikke lett. Både teknisk, pedagogisk og innholdsmessig må skjemaene arbeides med, slik at det blir forståelig for alle, og ikke minst enkelt å fyll... [+]
Kurset er rettet mot designere og utviklere. Vi er blant annet innom: Forståelige skjemaobjekter Beskrivelser og instruksjoner Obligatoriske felt Lesbarhet Vær konsekvent Grupperinger Viktige skjema Store, komplekse skjemaer Validering og feilhåndtering [-]
Les mer
2 dager 24 000 kr
28 Aug
23 Oct
22 Dec
SDWFND: Cisco SD WAN Operation and Deployment [+]
SDWFND: Cisco SD WAN Operation and Deployment [-]
Les mer
Arne Rettedals Hus 3 timer 3 200 kr
15 Oct
OneNote er et program fra Microsoft som gir deg mulighet til å digitalisere dine notater, og på kurset viser vi deg hvordan du jobber med opprettelse og oppbygning av not... [+]
OneNote er et program fra Microsoft som gir deg mulighet til å digitalisere dine notater. Programmet egner seg særlig for deg som har behov for å skrive møtenotater, foredragsnotater og arbeidsnotater. OneNote vil synkronisere dine notater på tvers av dine enheter, og kan benyttes på din PC, din smarttelefon eller nettbrett. Du kan bygge inn tekst og filer fra Outlook, Word, Excel og PowerPoint, samt film- og lydfiler. Har du oversikten over notater etter at møter er over? Føler du at de papirbaserte notatene over tid blir uoversiktlige og lite tilgjengelige. Du kan jobbe raskere, smartere og bedre ved å ta i bruk OneNote. I dine digitale notater i OneNote kan du inkludere tekst, bilder, lenker til filer og websider, lyd og film. Du kan ta notater fra din smarttelefon, ditt nettbrett eller din PC; alt etter hva du har tilgjengelig. Systemet vil synkronisere notatene på tvers av dine enheter. OneNote er en del av Microsoft Office og er tilgjengelig gratis for alle.  Kurset kan spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler. Deltakere må ha med egen datamaskin med relevant programvare. 6 gode grunner til å delta Du vil se hvor enkelt det er å ta raske notater Lær hvordan du finner igjen notater raskt og effektivt Du vil kunne koble notater til oppgaver i Outlook Lær å holde møtenotater koblet til avtaler og møter i Outlook Få en innføring i hvordan flere kan jobbe samtidig med notater Lær hvordan OneNote kobler lyd/videoopptak med notater Synkroniser dine notater mellom dine enheter (PC, mobil, nettbrett) Forkunnskap: Erfaring i bruk av Microsoft Office. Varighet:3 timer Pris:3200 kroner Ansatte ved UiS har egne betalingsbetingelser. [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, L... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende objektorientert programmering i for eksempel Java eller C++ Innleveringer: Øvinger: 8 av 11 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 4 timer. Case-beskrivelser etc. legges ut i ItsLearning 24 timer før. (NB! Eksamensform kan bli endret under forutsetning av at ny teknologi gjør det mulig å arrangere eksamen elektronisk.) Ansvarlig: Grethe Sandstrak Eksamensdato: 05.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal kandidaten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan gjøre rede for sentrale begreper innen objektorientering- kan konstruere et objektorientert C#. NET-program ut fra en gitt problemstilling- kan finne fram, sette seg inn i og anvende dokumentasjon om .NET Framework library- kjenner til ulike GUI-komponenter og hvordan de brukes i C#-programmer FERDIGHETER:Kandidaten kan:- sette opp programmiljø for å utvikle og kjøre C#. NET applikasjoner på egen pc- kan anvende klasser fra .NET Framework library- lage C#.NET program* med fordeling av oppgaver mellom objekter og der arv og polymorfi benyttes* med grafiske brukergrensesnitt* som kommuniserer med en database via SQL* med LINQ, delegater, templates GENERELL KOMPETANSEKandidaten kan:- kommunisere om objektorientert programmering og databaser med relevant begrepsapparat Innhold:NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, LINQ, Templates, Collections.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag C#.NET 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 2 dager 14 000 kr
In this course, the students will design various data platform technologies into solutions that are in line with business and technical requirements. This can include on-... [+]
The students will also explore how to design data security including data access, data policies and standards. They will also design Azure data solutions which includes the optimization, availability and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Data Platform Architecture Considerations. -Core Principles of Creating Architectures-Design with Security in Mind-Performance and Scalability-Design for availability and recoverability-Design for efficiency and operations-Case Study Module 2: Azure Batch Processing Reference Architectures. -Lambda architectures from a Batch Mode Perspective-Design an Enterprise BI solution in Azure-Automate enterprise BI solutions in Azure-Architect an Enterprise-grade Conversational Bot in Azure Module 3: Azure Real-Time Reference Architectures. -Lambda architectures for a Real-Time Perspective-Lambda architectures for a Real-Time Perspective-Design a stream processing pipeline with Azure Databricks-Create an Azure IoT reference architecture Module 4: Data Platform Security Design Considerations. -Defense in Depth Security Approach-Network Level Protection-Identity Protection-Encryption Usage-Advanced Threat Protection Module 5: Designing for Resiliency and Scale. -Design Backup and Restore strategies-Optimize Network Performance-Design for Optimized Storage and Database Performance-Design for Optimized Storage and Database Performance-Incorporate Disaster Recovery into Architectures-Design Backup and Restore strategies Module 6: Design for Efficiency and Operations. -Maximizing the Efficiency of your Cloud Environment-Use Monitoring and Analytics to Gain Operational Insights-Use Automation to Reduce Effort and Error [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
1 dag 9 500 kr
21 Aug
AI-3016: Develop custom copilots with Azure AI Studio [+]
AI-3016: Develop custom copilots with Azure AI Studio [-]
Les mer