IT-kurs
Nordland
Du har valgt: Skonseng
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Skonseng ) i IT-kurs
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettkurs 12 måneder 11 500 kr
ITIL® er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. [+]
ITIL® 4 Foundation-kurset er en introduksjon til ITIL® 4. Kurset lar kandidater se på IT-tjenestestyring gjennom en ende-til-ende driftsmodell, som inkluderer oppretting, levering og kontinuerlig forbedring av IT-relaterte produkter og tjenester. E-læringskurset inneholder 12 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Foundation e-læring (engelsk) i 12 måneder. ITIL® Foundation online voucher til sertifiseringstest + digital ITIL Foundation bok Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. Sertifiseringen består av: 40 spørsmål Multiple Choice 60 minutter + 15 minutter til rådighet dersom du ikke har engelsk som morsmål For å bestå må du ha minimum 26 riktige (65%) Ingen hjelpemidler tillatt ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Bergen Oslo 2 dager 9 900 kr
26 Aug
26 Aug
04 Sep
Excel Videregående [+]
Excel Videregående [-]
Les mer
Oslo Bergen 5 dager 25 900 kr
29 Sep
29 Sep
20 Oct
C# 12 Development and .NET 8 [+]
C# 12 Development and .NET 8 [-]
Les mer
Nettkurs 2 timer 3 120 kr
Mer enn 1,6 millioner fagfolk innenfor design og konstruksjon verden over, bruker Bluebeam Revu til å optimalisere samarbeidet og gjennomføre prosjekter mer effektivt. [+]
På dette online-kurset vil du lære: Opprette symbolbibliotek i Tool Chest. Skalerte symboler Eksisterende symbolbiblioteker (SKANSKA og CADELIT) Måling, mengder og telling Bruk av Markeringslisten til beregning, sporing og rapportering Bygge opp en riggplan Automatisk tegnforklaring Bruk av riggplan på byggeplass   [-]
Les mer
Oslo 3 timer 21 900 kr
29 Sep
29 Sep
03 Dec
DevOps in a .NET environment [+]
DevOps in a .NET environment [-]
Les mer
1 dag 9 900 kr
Jira Project Administration (Cloud) [+]
Jira Project Administration (Cloud) [-]
Les mer
Oslo 3 dager 22 000 kr
01 Sep
01 Sep
17 Nov
ArchiMate® 3 Training Course Combined Foundation and Practitioner [+]
ArchiMate® 3 Training Course Combined Foundation and Practitioner [-]
Les mer
Oslo 3 dager 24 500 kr
Check Point Certified Security Expert (CCSE) – R81.20 [+]
Check Point Certified Security Expert (CCSE) – R81.20 [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
This course introduces participants to deploying and managing containerized applications on Google Kubernetes Engine (GKE) and the other services provided by Google Cloud... [+]
Through a combination of presentations, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as pods, containers, deployments, and services; as well as networks and application services. This course also covers deploying practical solutions including security and access management, resource management, and resource monitoring. Objectives This course teaches participants the following skills: Understand how software containers work Understand the architecture of Kubernetes Understand the architecture of Google Cloud Platform Understand how pod networking works in Kubernetes Engine Create and manage Kubernetes Engine clusters using the GCP Console and gcloud/kubectl commands Launch, roll back and expose jobs in Kubernetes Manage access control using Kubernetes RBAC and Google Cloud IAM Managing pod security policies and network policies Using Secrets and ConfigMaps to isolate security credentials and configuration artifacts Understand GCP choices for managed storage services Monitor applications running in Kubernetes Engine   Course Outline Module 1: Introduction to Google Cloud Platform Use the Google Cloud Platform Console Use Cloud Shell Define cloud computing Identify GCP’s compute services Understand regions and zones Understand the cloud resource hierarchy Administer your GCP resources Module 2: Containers and Kubernetes in GCP Create a container using Cloud Build Store a container in Container Registry Understand the relationship between Kubernetes and Google Kubernetes Engine (GKE) Understand how to choose among GCP compute platforms Module 3: Kubernetes Architecture Understand the architecture of Kubernetes: pods, namespaces Understand the control-plane components of Kubernetes Create container images using Google Cloud Build Store container images in Google Container Registry Create a Kubernetes Engine cluster Module 4: Kubernetes Operations Work with the kubectl command Inspect the cluster and Pods View a Pod’s console output Sign in to a Pod interactivelty Module 5: Deployment, Jobs, and Scaling Create and use Deployments Create and run Jobs and CronJobs Scale clusters manually and automatically Configure Node and Pod affinity Get software into your cluster with Helm charts and Kubernetes Marketplace Module 6: GKE Networking Create Services to expose applications that are running within Pods Use load balancers to expose Services to external clients Create Ingress resources for HTTP(S) load balancing Leverage container-native load balancing to improve Pod load balancing Define Kubernetes network policies to allow and block traffic to pods Module 7: Persistent Data and Storage Use Secrets to isolate security credentials Use ConfigMaps to isolate configuration artifacts Push out and roll back updates to Secrets and ConfigMaps Configure Persistent Storage Volumes for Kubernetes Pods Use StatefulSets to ensure that claims on persistent storage volumes persist across restarts Module 8: Access Control and Security in Kubernetes and Kubernetes Engine Understand Kubernetes authentication and authorization Define Kubernetes RBAC roles and role bindings for accessing resources in namespaces Define Kubernetes RBAC cluster roles and cluster role bindings for accessing cluster-scoped resources Define Kubernetes pod security policies Understand the structure of GCP IAM Define IAM roles and policies for Kubernetes Engine cluster administration Module 9: Logging and Monitoring Use Stackdriver to monitor and manage availability and performance Locate and inspect Kubernetes logs Create probes for wellness checks on live applications Module 10: Using GCP Managed Storage Services from Kubernetes Applications Understand pros and cons for using a managed storage service versus self-managed containerized storage Enable applications running in GKE to access GCP storage services Understand use cases for Cloud Storage, Cloud SQL, Cloud Spanner, Cloud Bigtable, Cloud Firestore, and BigQuery from within a Kubernetes application [-]
Les mer
Virtuelt klasserom 3 dager 16 700 kr
XML er en etablert standard for plattformuavhengig lagring og utveksling av data, der innhold og presentasjon bearbeides separat. XSL er en nøkkelteknologi innenfor utvi.... [+]
Kursinstruktør Terje Berg-Hansen Terje Berg-Hansen har bred erfaring fra prosjektledelse, utvikling og drift med små og store databaser, både SQL- og NoSQL-baserte. I tillegg til å undervise i etablerte teknologier leder han også Oslo Hadoop User Group, og er levende interessert i nye teknologier, distribuerte databaser og Big Data Science.    Kursinnhold XML er en etablert standard for plattformuavhengig lagring og utveksling av data, der innhold og presentasjon bearbeides separat. XSL er en nøkkelteknologi innenfor utvikling og nyttiggjørelse av XML. Viktige hoveddeler innenfor XSL er XSLT, XSL-FO og XPath. Kurset gir deltakerne en innføring i XSL . Vi ser på hvilke muligheter vi har for bearbeiding av XML-data, og hvordan vi kan gjøre data tilgjengelig for presentasjon.   Du får en gjennomgang i: Introduksjon til XML, XSL og XSLT. Introduksjon til XPath og XQuery. Bruk av XSLT-maler og Xpath-uttrykk for å søke etter data i XML-dokumenter. Transformering av XML-dokumenter til xml, html og tekstdokumenter. Introduksjon til XSL-FO og produksjon av svg- og pdf-dokumenter Design og formatering av ouput fra XSLT-transformasjoner Sortering, gruppering og kombinering av XML-dokumenter Bruk av XSLT-verktøy til transformering og søk.   Målsetting Etter endt kurs skal kursdeltakerne blant annet vite hvordan man filtrerer, sorterer og transformerer XML-data, samt hvilke muligheter man har for å trekke inn annet innhold/data for presentasjon.   Gjennomføring Kurset gjennomføres med en kombinasjon av online læremidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvelsesoppgaver til hovedtemaene som gjennomgås.   [-]
Les mer
1 dag 3 500 kr
Vil du lære å lage enkle, stilige illustrasjoner for å illustrere et budskap eller dra ut viktige poeng fra lengre tekster slik at innholdet blir mer lesevennlig for m... [+]
Hvem passer kurset for? Deg som lager presentasjoner eller presenterer/markedsfører innhold på nett. Forhåndskunnskap: Kurset llustrator innføring eller tilsvarende kunnskap Dette lærer du: Teknikker til tegning av enkle figurer og former til bruk i illustrasjonen Bruk av tall i diagrammer Tilpasning av diagrammets utseende Fargebruk Teknikker for å hente inn nye idéer https://igm.no/infografikk/ [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer