IT-kurs
Telemark
Du har valgt: Vrådal
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Vrådal ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to provide accurate and reliable information about the configuration of services and configuration support items when and where it is needed. [+]
Understand the purpose and key concepts of Service Configuration Management, including its role in maintaining accurate and reliable information about configuration items (CIs) within the IT infrastructure. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content Mobile-optimised Practical exercises   Exam: 20 questions Multiple Choice 30 Minutes Closed book Pass Mark: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 4 timer 549 kr
Dette kurset er laget for deg som vil lære å bruke Google Analytics 4, og få innsikt i hvordan kundene dine bruker nettstedet eller appen din. Kurset varer i 4 timer og 5... [+]
Ønsker du å mestre Google Analytics 4 for å få dybdeinnsikt i kundeadferden på nettstedet eller appen din? Da er kurset "Google Analytics 4: Komplett", ledet av Espen Faugstad, perfekt for deg. Dette kurset er designet for å gi deg en helhetlig forståelse av Google Analytics 4, slik at du kan jobbe profesjonelt med dette kraftige analyseverktøyet. Kurset starter med grunnleggende om hvordan Google Analytics 4 fungerer og veileder deg gjennom installasjonen på din nettside. Du vil lære å konfigurere Google Analytics for å maksimere dets potensial, administrere brukere, spore nettstedsøk, og mye mer. I tillegg gir kurset deg en detaljert gjennomgang av standardrapporter og utforskninger som er tilgjengelige i Google Analytics 4. Mot slutten av kurset vil du dykke inn i mer avanserte temaer som opprettelse og sporing av egendefinerte hendelser, konverteringssporing, og hvordan du kan utnytte innsikter fra brukerdata for å forbedre dine digitale strategier. Dette kurset er din vei til å bli en ekspert i Google Analytics 4.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Installer Kapittel 3: Konfigurer Kapittel 4: Rapporter Kapittel 5: Utforsk Kapittel 6: Hendelser Kapittel 7: Avansert Kapittel 8: Avslutning   Varighet: 4 timer og 48 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Bedriftsintern 3 dager 13 500 kr
The SQL Master Class for Java Developers training is aimed to level up your SQL skills with techniques such as Window Functions, recursive queries, Pivoting, JSON process... [+]
Throughout four years of teaching my High-Performance Java Persistence course, I came to realize that there is so much Java developers can learn about the latest SQL features introduced by Oracle, SQL Server, PostgreSQL, or MySQL.This training spans over the course of 2 days and covers the Top 4 relational database systems: Oracle, SQL Server, PostgreSQL, and MySQL.From execution plans to the best way to paginate data, this training explains lesser-known techniques such as LATERAL JOIN, CROSS APPLY, as well as Derived Tables, Common Table Expressions, recursive queries, and the amazing Window Functions, PIVOT, or UPSERT statements.Last but not least, we are going to learn that, not only modern databases support JSON column types, but you can combine JSON structures with the traditional relational ones, therefore getting the best of both worlds.All examples are inspired by real-life scenarios, and they come in a GitHub repository for which attendees have exclusive and unlimited time access.At the end of these two days of training, the attendees will be better prepared to solve various data-intensive tasks using all these awesome SQL features that have been over the past 20 years.Agenda  Day 1Introduction - 1h 30m    - Beyond SQL:92    - SQL Parsing    - SQL Operation Order    - TOP-N queries    - OFFSET pagination    - Keyset PaginationSubqueries - 1h 15m    - EXISTS and NOT EXISTS    - IN and NOT IN    - ANY and ALL    - INSERT with subqueries    - Aggregation with subqueries   Joins - 1h 15m    - CROSS JOIN    - INNER and LEFT/RIGHT OUTER JOIN    - FULL OUTER JOIN    - NATURAL JOIN    - LATERAL JOIN and CROSS APPLYDay 2Window Functions - 1h 30m    - Analytics queries and window frame processing    - ROW_NUMBER, RANK, and DENSE_RANK    - FIRST_VALUE, LAST_VALUE, LEAD and LAG    - CUME_DIST and PERCENT_RANK    - PERCENTILE_DISC and PERCENTILE_CONTDerived Tables, CTE, Hierarchical Queries - 1h 30m    - Derived Tables    - CTE (Common Table Expressions)    - Recursive CTE    - Hierarchical queries   PIVOT, UNPIVOT, FILTER, and CASE - 1h    - CASE Expressions    - PostgreSQL FILTER Expressions    - PIVOT    - UNPIVOTDay 3UPSERT and MERGE - 30m- MERGE statements- UPSERT statements   JSON processing - 1h 30m    - Schemaless data structures and JSON    - JSON queries    - EAV Model   Transactions and Concurrency Control - 2h    - ACID, 2PL, MVCC    - Isolation Levels and anomalies    - Pessimistic and optimistic locking    - SKIP_LOCKED, NOWAIT [-]
Les mer
Oslo 3 dager 21 000 kr
08 Sep
08 Sep
17 Nov
ITIL® 4 Specialist: Monitor, Support and Fulfil [+]
ITIL® 4 Specialist: Monitor, Support and Fulfil [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Bedriftsintern 2 dager 8 500 kr
Bli funksjonell og skriv konsis, deklarativ kode med Javas Stream API. Workshopen retter seg primært mot Java-utviklere som vil lære mer om funksjonell programmering, lam... [+]
Dette kurset tilbys som bedriftsinternt kurs   Workshopen består av et minimum med teori og et maksimum av praktiske øvelser hvor vi lager streams av  Arrays, List, Set, Map og Files - filtrerer, mapper til nye objekter, utfører aggregeringer og konverterer tilbake til nye collections mm.   Workshopen vil dekke bl.a. Sette opp en stream, med Stream.of(), IntStream.of() og DoubleStream.of() Konvertere et Array til en stream med Arrays.stream() Konvertere en collection av typen List, Set eller Map til en stream med stream() Filtrere ut verdier med filter() Mappe til nye objekter med map() og flatMap() Sortere med sorted() og ulike typer Comparators Aggregere med reduce() og collect() Behandle hvert element med forEach() og forEachOrdered() Gruppere og telle opp forekomster i hver gruppe med collect() Konvertere tilbake til en collection med collect() Konvertere til et objekt med get() Begrense reultatet med limit() Hente enkel statistikk (min, max, average, sum) med reduce() og collect() og bl.a. summarizingInt() Bruke :: til metodereferanser Lese en fil inn i en stream med Files.lines() Behandle hvert element med forEach() og forEachOrdered() Workshopen holdes på norsk og går over 2 dager, fra 10.00-14.00, for tiden online, med dedikert lærer og Microsoft Teams som kommunikasjonsplattform.   [-]
Les mer
Oslo 5 dager 30 000 kr
22 Sep
22 Sep
17 Nov
Administering Microsoft SQL Server [+]
Administering Microsoft SQL Server [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Vi utforsker mulighetene med diagrammer i Excel, går gjennom de mest brukte diagramvariantene og utforsker mulighetene. Vi tar også en kort innføring i pivottabeller slik... [+]
Kursinnhold Hva slags data kan brukes som grunnlag for et diagram Stolpediagram Sektordiagram Kombinert diagram Formatering av diagrammer Tips og triks Smarte løsninger Sparkline Hurtiganalyse Bruk av Excels diagrammer i andre Office-programmer [-]
Les mer
Virtuelt klasserom 2 dager 13 500 kr
XML er en moden standard for å utveksle informasjon mellom applikasjoner. Med XML og relaterte standarder som XSL(T) og XQuery er det mulig å utvikle distribuerte nettbas... [+]
Kursinstruktør Terje Berg-Hansen Terje Berg-Hansen har bred erfaring fra prosjektledelse, utvikling og drift med små og store databaser, både SQL- og NoSQL-baserte. I tillegg til å undervise i etablerte teknologier leder han også Oslo Hadoop User Group, og er levende interessert i nye teknologier, distribuerte databaser og Big Data Science.    Kursinnhold XML er en moden standard for å utveksle informasjon mellom applikasjoner. Med XML og relaterte standarder som XSL(T) og XQuery er det mulig å utvikle distribuerte nettbaserte tjenester for utveksling av data i et standardisert format.    Målsetting Deltakerne vil etter kurset ha en grunnleggende forståelse av og kjennskap til hvorfor og hvordan XML kan anvendes for å oppnå en bedre utveksling og deling av strukturert og ustrukturert informasjon.   Forkunnskaper Grunnleggende kunnskaper om internett, HTML og CSS er en fordel, men ikke nødvendig for å ta dette kurset.   Kursinnhold Introduksjon Introduksjon til XML og XML-relaterte teknologier, som XPath, XQuery og XSL XML-verktøy Editorer og verktøy for validering, søk og endring av XML Grunnleggende XML XML struktur og syntaks. Gjennomgang av målene for XML. Lage og utforme XML dokumenter Navnerom (namespaces) Oppretting og bruk av navnerom for å skille elementer og funksjoner med samme navn. Validering av  XML Gjennomgang av teknologier som Document Type Definitions (DTD's) og XML Schemas for å kontrollere og styre struktur og data i XML filer Presentasjon av XML Bruk av html og CSS til å presentere XML data Søking i XML Søk i XML-dokumenter med XPath . Introduksjon til XSL(T) Kort om XSL og XSL Transformations. Bruk av XSLT til å formatere, sortere, filtrere og konvertere XML Data   Gjennomføring Kurset gjennomføres med en kombinasjon av online læremidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvelsesoppgaver til hovedtemaene som gjennomgås.   [-]
Les mer