IT-kurs
Kurs i programvare og applikasjoner
Du har valgt: Överjärna
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Överjärna ) i Kurs i programvare og applikasjoner
 

Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
2 dager 8 500 kr
Etter fullført kurs skal du beherske mulighetene Final Cut Pro. [+]
• Final Cut grensesnitt & funksjoner oversikt som: Fordeler av “magnetic timeline”, “connected clips & secondary storyline”, lyd og “roles”• Final Cut keyboard shortcuts• Import og organisasjon av videofiler i “library” med “keywords”• Klipp av en videoreportasje med innklippsbilder, intervju, voiceover og logo/ grafikk• Sync av ekstern lyd• Flerkameraklipping med “Multicam”• Fargekorrigering• Lydmiks og lydforbedring• Enkle “Film looks” effekter og justering av effekter• 2D og 3D tekst, legge på navn og tittel, enkel keyframeing & animasjon av logo og grafikk• Eksport Dag 2: Fordypning i FCPX og Motion 5 for å bygge et sett av animasjoner og grafikk for lynrask produksjon av et TV-program / YouTube video-serie • Avanserte video- og grafikk-komposisjoner med flere lag• Triks til å overkomme begrensningene i “magnetic timeline”• Anonymisering av ansikter og nummerskilt• Motion: Tilpassning av FCPX “Transitions” og “Titles” i Motion 5 for å skape egne design på en enkel måte• Motion 5: 2D animasjoner og tekst tracking• Motion 5: Enkle 3D animasjoner og kamera• Motion 5: Keyframes og Behaviors• Motion 5: Vi kombinerer alt vi lærer om Motion 5 og skaper grafiske elementer for et TV-program / YouTube video-serie som logo-intro-animasjon, lower-third, custom transitions/logo stinger.• Motion 5: Publisering til FCPX for lynrask produksjon i framtiden [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
01 Sep
20 Oct
01 Dec
Dette er kurset for deg som ikke er vant med Excel, men gjerne vil lære, deg som jobber med Excel regneark andre har laget, men ikke helt har oversikten over hva Excel ka... [+]
Kursinnhold Gjennomgang av Excel vinduet Enkle formler Enkel formatering Klipp og lim Kopiering av formler Merking Slette data Fjerne og legge til celler, rader og kolonner Angre Flytting og kopiering Søk og erstatt Autofyll Cellereferanser Låse og gi navn til celler Hva er en funksjon? Funksjonsveiviseren Gjennomgang av de mest brukte funksjonene: Summer, antall, størst, min og gjennomsnitt. Målgruppe Deg som Har begynt i en stilling hvor en er forventet å kunne Excel Er nysgjerrig på hva Excel kan gjøre for deg i din jobb Er nybegynner eller litt øvet Sliter med å skjønne hvordan du kan jobbe mest effektivt i Excel Forkunnskaper Excel: Ingen Øvrig: Er kjent med bruk av PC Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This course teaches Azure professionals about the core capabilities of Google Cloud in the four technology pillars: networking, compute, storage, and database. [+]
The course is designed for Azure system administrators, solutions architects, and SysOps administrators who are familiar with Azure features and setup and want to gain experience configuring Google Cloud products immediately.  This course uses lectures, demos, and hands-on labs to show you the similarities and differences between the two platforms and teach you about some basic tasks on Google Cloud. Objectives This course teaches participants the following skills: Identify Google Cloud counterparts for Azure IaaS, Azure PaaS, Azure SQL, Azure Blob Storage, Azure Application Insights, and Azure Data Lake Configure accounts, billing, projects, networks, subnets, firewalls, VMs, disks, auto-scaling, load balancing, storage, databases, IAM, and more Manage and monitor applications Explain feature and pricing model differences All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud -Explain the advantages of Google Cloud-Define the components of Google’s network infrastructure, including points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud -Identify the purpose of projects on Google Cloud-Understand how Azure’s resource hierarchy differs from Google Cloud’s-Understand the purpose of and use cases for Identity and Access Management-Understand how Azure AD differs from Google Cloud IAM-List the methods of interacting with Google Cloud-Launch a solution using Cloud Marketplace Module 3: Virtual Machines in the Cloud -Identify the purpose and use cases for Google Compute Engine-Understand the basics of networking in Google Cloud-Understand how Azure VPC differs from Google VPC-Understand the similarities and differences between Azure VM and Google Compute Engine-Understand how typical approaches to load-balancing in Google Cloud differ from those in AzureDeploy applications using Google Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Cloud Storage, Cloud SQL, Cloud Bigtable and Cloud Datastore-Understand how Azure Blob compares to Cloud Storage-Compare Google Cloud’s managed database services with Azure SQL-Learn how to choose among the various storage options on Google Cloud-Load data from Cloud Storage into BigQuery Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers-Identify the purpose of and use cases for Google Container Engine and Kubernetes-Understand how Azure Kubernetes Service differs from Google Kubernetes Engine-Provision a Kubernetes cluster using Kubernetes Engine-Deploy and manage Docker containers using kubectl Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine-Contrast the App Engine Standard environment with the App Engine Flexible environment-Understand how App Engine differs from Azure App Service-Understand the purpose of and use cases for Google Cloud Endpoints Module 7: Developing, Deploying and Monitoring in the Cloud -Understand options for software developers to host their source code-Understand the purpose of template-based creation and management of resources-Understand how Cloud Deployment Manager differs from Azure Resource Manager-Understand the purpose of integrated monitoring, alerting, and debugging-Understand how Google Monitoring differs from Azure Application Insights and Azure Log Analytics-Create a Deployment Manager deployment-Update a Deployment Manager deployment-View the load on a VM instance using Google Monitoring Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms-Understand how Google Cloud BigQuery differs from Azure Data Lake-Understand how Google Cloud Pub/Sub differs from Azure Event Hubs and Service Bus-Understand how Google Cloud’s machine-learning APIs differ from Azure’s-Load data into BigQuery from Cloud Storage-Perform queries using BigQuery to gain insight into data Module 9: Summary and Review -Review the products that make up Google Cloud and remember how to choose among them-Understand next steps for training and certification-Understand, at a high level, the process of migrating from Azure to Google Cloud [-]
Les mer
Virtuelt eller personlig 1 dag 3 120 kr
Målsetning for kurset: Opparbeide ferdigheter i å navigere, kommunisere og hente ut informasjon fra BIM-modeller i IFC-formatet med bruk av Solibri Anywhere. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt.NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Solibri Anywhere og Site   På kurset vil du lære å: Sammenstille flere IFC-modeller og navigere i disse Velge ut grupper av objekter for nærmere studier Legge inn snitt, måle, markere og opprette slides fra visninger av modellen Opprette rapporter og kommentere «issues» i Excel og BCF-format Se på resultatet av utførte regelsjekker i modellen Se på resultatet av utførte informasjons- og mengdeuttak fra modellen Høste informasjon og mengder fra modellen basert på eksisterende maler og klassifikasjoner Skape egne klassifikasjoner og definisjoner for megndeuttak   Dette er et populært kurs, meld deg på nå! Spesialtilpasset kurs: NTI anbefaler spesialtilpassede kurs for bedrifter som planlegger å sende to eller flere deltakere på Solibri-kurs. Grunnen til dette er at Solibri brukes av mange forskjellige aktører og profesjoner i BAE-bransjen, og følgelig blir de åpne kursene ofte for generelle for enkelte kursdeltakere. I et spesialtilpasset kurs vil vår kurskonsulent kartlegge fokusområdene i forkant av kurset, og gjennomføre kurset i henhold til selskapets behov, gjerne basert på kundens egne modeller. Utbyttet av kurset blir følgelig mye større.  Ta kontakt med oss på telefon 483 12 300, epost: salg-no@nti.biz eller les mer på www.nti.biz   [-]
Les mer
Oslo 2 dager 12 900 kr
10 Sep
10 Sep
12 Nov
Power BI Desktop – DAX formler [+]
Power BI Desktop – DAX formler [-]
Les mer
Nettkurs 2000 timer 2 750 kr
Med GeT Everything får du tilgang til alle kurs og innholdet fra Autodesk, Adobe, Primavera, Bluebeam, Bentlye, Microsoft, Trimble og McNeel. [+]
GeT Everything NTI tilbyr eLæringkurs av høyeste kvalitet. Uansett hvilket kurs du velger har du tilgang til dem 24/7 i 1 år (365 dager). Med elæringskurs velger du selv ditt tempo i læringen, og om du vil lære gjennom kombinasjon av å se, lese, lytte og teste selv – eller hvorfor ikke en kombinasjon av flere? Det du trenger er en PC, smarttelefon eller nettbrett som har internettilgang   Her er et utvalg av kursene du får tilgang på: Autodesk Adobe Primavera Bluebeam Bentlye Microsof Trimble McNeel NTI  leverer opplæring for å forenkle og effektivisere din arbeidshverdag Vi har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon. Global eTraining har over 25 års erfaring med opplæring, og har solgt millioner av elæringskurs i over 150 land.  PC, smarttelefon eller nettbrett som har internettilgang Pål har gjennomført e-læringskurs Pål hadde ikke anledning til å reise bort en uke for å delta på kurs, da var det forlokkende å gjennomføre kurset som e-læringskurs. Kurset var absolutt verdt pengene. Det var en viktig bekreftelse på at jeg har basiskunnskapene. Jeg lærte mange nye viktige kommandoer for å gjøre operasjoner mer effektivt, fikk også en pekepinn på hvor jeg kan bygge på med kunnskap.Les mer her [-]
Les mer
3 dager 22 500 kr
Oracle BI Publisher: Fundamentals [+]
Oracle BI Publisher: Fundamentals [-]
Les mer
Virtuelt eller personlig 5 450 kr
Kurs for deg som bruker Inventor og arbeider med sheet metal. På kurset undervises det i Inventors spesielle sheet metal modul. [+]
  Fleksible kurs for fremtiden Ny kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Få kontroll på alle funksjonene i Sheet Metal   Her er et utvalg av temaene du vil lære på kurset: Bruker-grensesnitt og filtyper Funksjoner for platekonstruksjon Standard-oppsett 2D dokumentasjon utbrettsdelen Eksport av data til stansemaskiner Etter kurset vil du kunne arbeide optimalt med konstruksjon og dokumentasjon av materialer laget i sheet metal modulen. Du lærer prinsipper og best practise i bruk og opsetting av parter til plate konstruksjoner, samt tilgang til bearbeidelse av plater, utbrett og output til f.eks. DXF-filer.     Tilpassete kurs for bedrifter Vi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov.   Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no   [-]
Les mer
Nettkurs 2 timer 549 kr
Vil du lære å utnytte mer av Microsoft Teams? Da anbefaler vi vårt nye nettkurs med videoundervisning, utviklet av ekspertinstruktør Espen Faugstad. Kurset er skreddersyd... [+]
Oppdag kraften i effektivt samarbeid med Microsoft Teams gjennom dette omfattende nettkurset ledet av Espen Faugstad. Kurset er skreddersydd for å gi deg en grundig forståelse av Teams' funksjoner, slik at du kan styrke kommunikasjon og samarbeid i organisasjonen din. Lær å navigere i Teams, administrere teams og kanaler, chatte effektivt, holde møter, og dele filer, samt integrere med andre Microsoft 365-applikasjoner og tredjepartsverktøy. Dette kurset er ideelt for alle roller – fra de som er ansvarlige for administrasjonen av Microsoft Teams, til teamledere som ønsker å forbedre samarbeidet, og ansatte som ønsker å jobbe mer effektivt. Meld deg på i dag for å bli en ekspert i Microsoft Teams og ta skrittet mot en mer effektiv og produktiv arbeidshverdag med veiledning fra Espen Faugstad.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Kom i gang Kapittel 3: Teams og kanaler Kapittel 4: Kommunikasjon Kapittel 5: Møter og videosamtaler Kapittel 6: Filhåndtering og samarbeid Kapittel 7: Ekstra funksjonalitet Kapittel 8: Avslutning   Varighet: 1 time og 47 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt eller personlig 1 dag 5 950 kr
AutoCAD P&ID Grunnkurs er ment for deg som skal bruke AutoCAD P&ID som verktøy til P&I-diagrammer. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   AutoCAD P&ID grunnkurs Her er et utvalg av temaene du vil lære på kurset: Opprette og håndtere P&ID-prosjekter Tegne og redigere P&ID-diagrammer Eksportere og Importere data via Excel Uttrekk av lister og rapporter Du vil lære å opprette og håndtere P&ID-prosjekter, tegne diagrammer med de verktøy og kommandoer som er designet til formålet, og bruke toolpalettenes utstyr, ventiler, fittings og instrumenter. I tillegg til å bruke valideringsverktøyet til å kvalitetssikre ditt prosjekt, eksportfunksjonen til å skape 'nøytrale' AutoCAD-kopier av dine P&ID-tegninger samt å lage forskjellige rapporter og datauttrekk for f.eks. utstyr, ventiler, instrumenter osv.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
4 dager 22 500 kr
MB-220: Dynamics 365 Customer Insights - Journeys [+]
MB-220: Dynamics 365 Customer Insights - Journeys [-]
Les mer
Nettkurs 3 timer 549 kr
Ta vårt videokurs i Acrobat Pro fra din datamaskin. Lær så mye du vil, når du vil. Du får gratis hjelp. Du får kursbevis. Du får tilgang til alle kurs. Meld deg på her! [+]
Acrobat Pro DC er et kraftig verktøy som gir deg muligheten til å opprette, redigere og signere PDF-dokumenter. PDF, som står for Portable Document Format, er en standard for å presentere og dele dokumenter uavhengig av programvare, maskinvare og operativsystem. Med Acrobat Pro DC kan du arbeide med tekst, bilder, videoer, koblinger, knapper og skjemaer i PDF-format. PDF-formatet ble introdusert i 1991 av Dr. John Warnock, medgrunnleggeren av Adobe, med målet om å gjøre det enkelt for alle å samle, dele og skrive ut dokumenter fra hvilket som helst program. I dag foretrekkes PDF-formatet av bedrifter over hele verden. I dette kurset, ledet av Espen Faugstad hos Utdannet.no, vil du lære å utnytte Adobe Acrobat Pro DC til fulle. Kurset vil ta deg gjennom programmets organisasjon, verktøy og paneler. Du vil lære å opprette, søke, redigere og organisere PDF-dokumenter. I tillegg vil du bli kjent med elektronisk signering, passordbeskyttelse, skjemaoppretting og kryptering av PDF-dokumenter.   Innhold: Kapittel 1: Organisering og Verktøy Kapittel 2: Opprette PDF Kapittel 3: Søke og Erstatte Kapittel 4: Redigere PDF Kapittel 5: Organisere Sider Kapittel 6: Kommentarer Kapittel 7: Skjema og Signatur Kapittel 8: Beskyttelse og Kryptering Kapittel 9: Lagre PDF Kapittel 10: Avslutning   Varighet: 2 timer og 23 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer som strømmetjenester for musikk eller TV-serier, der kundene våre betaler en fast månedspris for tilgang til alle kursene vi har produsert. Plattformen har hatt betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling morsomt, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
2 dager 6 500 kr
Vil du jobbe enklere og mer effektivt i InDesign? På dette kurset vil du lære å lage gode, avanserte og tidsbesparende maler for sider, tekst og objekter, samt gjenbru... [+]
Vil du jobbe enklere og mer effektivt i InDesign? På dette kurset vil du lære å lage gode, avanserte og tidsbesparende maler for sider, tekst og objekter, samt gjenbruk via biblioteker. Etter kurset kan du lage egne maler som automatiserer mange arbeidsprosesser og sparer deg for mye tid og arbeid. Gode maler kvalitetsikrer produktetene dine og gir deg mere tid til å være kreativ. Hvem passer kurset for? Kurset passer for deg som jobber i Adobe InDesign og ønsker å utnytte programmets potensiale. Forhåndskunnskap i InDesign: «InDesign grunnkurs» eller tilsvarende kunnskap. Dette lærer du: God, effektiv og avansert bruk av maler for sider, tekst og objekter i Adobe InDesign Spar på elementer du lager med CC Libraries Lage automatisk innholdsfortegnelse Bruk av tabell Tekstlenker og registerlinjer Hvordan tilpasse en layout til ulike størrelser i samme dokument Lage egne tastatursnarveier https://igm.no/indesign-kurs-videregaende/ [-]
Les mer