IT-kurs
Kurs i programvare og applikasjoner
Akershus
Du har valgt: Eidsvoll
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Eidsvoll ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 2 190 kr
På dette kurset ser vi på hvordan man kan lage egne tittelfelt, hvordan informasjonen vi legger inn i partene kan hentes i tittelfelt og stykkliste. Jo mer man kan automa... [+]
Bruker du den vanlige Inventor-malfilen.idw fortsatt, så trenger du kanskje å gjøre den til din egen. Vil du ha A-A (1:20) plassert fast under et view, istedenfor å alltid flytte den under manuelt? Vil du ha lagt til faste skaleringer, eller holder det med de få som ligger i templaten?Er det tykk linjetykkelse i tittelfelt-rammen?Får du Style Conflict- warning hver gang du starter en ny template?Endrer du alltid noe manuelt i tegningen? Du vil få svar på alle disse spørsmålene i dette kurset!   HOVEDPUNKTER: lage eget tittelfelt sette inn logo i tittelfeltet opprette nytt material-bibliotek, og lage nye materialer lage Custom Properties i part, og få dem inn i stykkliste unngå å få Style Conflict-advarselen hver gang du oppretter en ny fil bli kjent med Styles Editor lagre endringer i Styles, dvs endringer i stykkliste, linjetykkelser, stykk-lister, dimensjoner, farger osv. litt om Project-oppsett [-]
Les mer
Nettkurs 2 timer 1 690 kr
Tekst er ikke alltid best egnet til å kommunisere ditt budskap. Dette webinaret viser deg hvordan du enkelt og effektivt benytter figurer, smart art modeller, diagrammer.... [+]
Tekst er ikke alltid best egnet til å kommunisere ditt budskap. Dette webinaret viser deg hvordan du enkelt og effektivt benytter figurer, smart art modeller, diagrammer, bilder og video. Du får en rekke tips som vil bidra til at du sparer mye tid.  Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause.  Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.    Kursinnhold:   Innsetting av ulike objekter Figurer og SmartArt Bilder Video - ha kontroll på avspilling   Bruk av diagrammer Koblinger til Excel Håndtere koblinger   Håndtering av objekter Justere og fordele Fordeler og ulemper ved gruppering   3 gode grunner til å delta 1. Lær og justere og fordele objekter effektivt 2. Lag figurmodeller raskt og enkelt 3. Ha kontroll på koblede objekter   [-]
Les mer
Nettkurs 180 dager 12 000 kr
Elæring CCNA: Implementing and Administering Cisco Solutions [+]
CCNA: Implementing and Administering Cisco Solutions [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This course will teach you how to containerize workloads in Docker containers, deploy them to Kubernetes clusters provided by Google Kubernetes Engine, and scale those wo... [+]
Objectives Understand how software containers work Understand the architecture of Kubernetes Understand the architecture of Google Cloud Understand how pod networking works in Google Kubernetes Engine Create and manage Kubernetes Engine clusters using the Google Cloud Console and gcloud/kubectl commands   Course Outline Module 1: Introduction to Google Cloud -Use the Google Cloud Console-Use Cloud Shell-Define Cloud Computing-Identify Google Cloud compute services-Understand Regions and Zones-Understand the Cloud Resource Hierarchy-Administer your Google Cloud Resources Module 2: Containers and Kubernetes in Google Cloud -Create a Container Using Cloud Build-Store a Container in Container Registry-Understand the Relationship Between Kubernetes and Google Kubernetes Engine (GKE)-Understand how to Choose Among Google Cloud Compute Platforms Module 3: Kubernetes Architecture -Understand the Architecture of Kubernetes: Pods, Namespaces-Understand the Control-plane Components of Kubernetes-Create Container Images using Cloud Build-Store Container Images in Container Registry-Create a Kubernetes Engine Cluster Module 4: Introduction to Kubernetes Workloads -The kubectl Command-Introduction to Deployments-Pod Networking-Volumes Overview [-]
Les mer
2 dager 8 500 kr
Etter fullført kurs skal du beherske mulighetene Final Cut Pro. [+]
• Final Cut grensesnitt & funksjoner oversikt som: Fordeler av “magnetic timeline”, “connected clips & secondary storyline”, lyd og “roles”• Final Cut keyboard shortcuts• Import og organisasjon av videofiler i “library” med “keywords”• Klipp av en videoreportasje med innklippsbilder, intervju, voiceover og logo/ grafikk• Sync av ekstern lyd• Flerkameraklipping med “Multicam”• Fargekorrigering• Lydmiks og lydforbedring• Enkle “Film looks” effekter og justering av effekter• 2D og 3D tekst, legge på navn og tittel, enkel keyframeing & animasjon av logo og grafikk• Eksport Dag 2: Fordypning i FCPX og Motion 5 for å bygge et sett av animasjoner og grafikk for lynrask produksjon av et TV-program / YouTube video-serie • Avanserte video- og grafikk-komposisjoner med flere lag• Triks til å overkomme begrensningene i “magnetic timeline”• Anonymisering av ansikter og nummerskilt• Motion: Tilpassning av FCPX “Transitions” og “Titles” i Motion 5 for å skape egne design på en enkel måte• Motion 5: 2D animasjoner og tekst tracking• Motion 5: Enkle 3D animasjoner og kamera• Motion 5: Keyframes og Behaviors• Motion 5: Vi kombinerer alt vi lærer om Motion 5 og skaper grafiske elementer for et TV-program / YouTube video-serie som logo-intro-animasjon, lower-third, custom transitions/logo stinger.• Motion 5: Publisering til FCPX for lynrask produksjon i framtiden [-]
Les mer
Klasserom + nettkurs 1 dag 4 490 kr
Dette er kurset passer for deg som har grunnleggende Windowskunnskap og som skal begynne og ta i bruk PowerPoint. [+]
Har du lite erfaring med PowerPoint og ønsker en innføring i programmet? På dette kurset lærer du hvordan du lager presentasjoner med bruk av tekst, bilder og ulike oppsett i PowerPoint. Du jobber i ditt eget tempo via et e-læringsprogram, med instruktør tilstede i rommet som hjelper deg om du står fast.   Kursinnhold:   Bli kjent med PowerPoint Oppstart Åpning Visninger Navigering Lagring og lukking Alternativer Egenskaper Hjelpemuligheter   Utforming Utformingsprosessen Nye presentasjoner Nye lysbilder Tema   Tekst Bruk av tekst i presentasjoner Innskriving og redigering Maler Skriftformatering Justering Avstand mellom linjer og avsnitt Punktlister og nummererte lister Angremuligheter Topptekst og bunntekst Tabulatorer Søking og erstatting Stavekontroll Synonymordbok   Bilder og objekter Bruk av bilder Utklipp Bilder fra fil Fotoalbum Video og lyd fra fil Arbeid med objekter Formatering av bilder Import av objekter   Tegning Tegning Koblingslinjer Formatering av objekter WordArt SmartArt   Diagram Utforming av diagram Diagramtyper Diagramelementer Formatering av diagram   Organisasjonskart Utforming av organisasjonskart Formatering av organisasjonskart   Tabeller Utforming av tabeller Merking Innsetting og sletting Radhøyde og kolonnebredde Justering   Utskrift Utskriftsformat Forhåndsvisning og utskrift Eksport av lysbilder til Word   Lysbildeframvisning Animasjoner Egendefinerte animasjoner Lysbildesortering Overgangseffekter Lysbildeframvisning Tilpassede framvisninger Framvisning uavhengig av PowerPoint   Internett og distribusjon Websider Hyperkoblinger Handlingsknapper Elektronisk post PDF- og XPS-format Dokumentinspeksjon Endelig versjon   [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excelfunksjoner - elæringskurs [+]
Excelfunksjoner - elæringskurs [-]
Les mer
Nettkurs 3 timer 3 120 kr
I de fleste prosjekter skal bygget/byggene plasseres geografisk i henhold til et koordinatsystem. [+]
NTI leverer opplæring for å forenkle og effektivisere din arbeidshverdag Årlig utdanner over 8.000 personer seg i ulike CAD- og BIM-løsninger hos NTI.Vi har mer enn 70 forskjellige kurs innen fagområdene CAD/BIM-, Industri, Prosess, Plant og Infrastruktur- og dokumenthåndtering, og i snitt har våre 100 konsulenter og instruktører mer enn 10 års erfaring med opplæring og konsulenttjenester. Hvordan få riktig oppsett av koordinater i prosjekt? Dette er et tema NTI merker stor pågang rundt til support, og henvendelsene kommer fra disipliner som byggteknikk, VVS og elektro i tillegg til arkitekt. Det er ofte arkitekten som setter opp koordinatene i Revit. Hvis utgangspunktet er feil, påvirkes dette i alle andre disipliner også. Spesielt der det er krav til at utvekslingsformatet er IFC. På dette online-kurset vil du lære: Forskjellen mellom de ulike koordinatsystemene Hva er et lokalt nullpunkt Sette opp reelle koordinater (Survey) «Best Practice» i oppsett av koordinater fra start Samhandling ved utveksling av filer og koordinater Behandle flere koordinatsystemer i samme prosjekt IFC export/import i forhold til delte koordinater Det kan gå noe tid mellom hver gang du setter opp koordinater, og det er lett å glemme prosessen. Etter gjennomført kurs, får du en «step by step» dokumentasjon, som kan benyttes som oppslagsverk senere.  Kurs på dine betingelser!Ditt firma har kanskje investert i ny CAD-programvare, oppgradert til ny versjon, oppdatert til ny programvare eller dere trenger rett og slett oppfriskning. Da er det på tide å investere i kompetanse for dine ansatte! Kontakt vår kurskoordinator Wenche, telefon 21 40 27 89 eller epost. [-]
Les mer
Nettkurs 2 timer 549 kr
Ta vårt videokurs i Excel fra din datamaskin. Lær så mye du vil, når du vil. Du får gratis hjelp. Du får kursbevis. Du får tilgang til alle kurs. Meld deg på her! [+]
Oppdag kraften i Microsoft Excel med "Excel: Grunnleggende", et detaljert kurs ledet av Espen Faugstad hos Utdannet.no. Microsoft Excel er et essensielt verktøy for dataanalyse og regnearkbehandling, brukt i en rekke yrker og bransjer. Dette kurset er skreddersydd for å gi deg en solid forståelse av Excel, gjør deg i stand til å bruke programmet effektivt og med selvtillit. Kurset starter med de grunnleggende aspektene av Excel, inkludert navigering i brukergrensesnittet, bruk av hurtigtilgang, båndet, formellinjen og statuslinjen. Du vil lære å legge til og håndtere data, bruke formler og funksjoner for ulike beregninger som summering, gjennomsnitt, maksimum, minimum og mer. I tillegg vil du utforske hvordan du formaterer celler og bruker diagrammer for å presentere data på en visuell og tiltalende måte. Kurset dekker også hvordan du effektivt kan arbeide med arbeidsark og eksportere data. Ved kursets slutt vil du ha en grundig forståelse av Excel og være i stand til å bruke dets mange funksjoner for å utføre en rekke oppgaver, fra enkle beregninger til kompleks dataanalyse.   Innhold: Kapittel 1: Brukergrensesnitt Kapittel 2: Legg til data Kapittel 3: Formler og funksjoner Kapittel 4: Formatere Kapittel 5: Diagrammer Kapittel 6: Arbeidsark Kapittel 7: Eksportere Kapittel 8: Avslutning   Varighet: 2 timer og 15 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Virtualisering med VMware. [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Øvinger: 8 av 12 må være godkjent. Personlig veileder: ja Vurderingsform: Praktisk hjemmeeksamen over 2 dager. Fra 09:00 til 15:00 dagen etter. Rapport leveres i itslearning. Ansvarlig: Stein Meisingseth Eksamensdato: 02.12.13 / 05.05.14         Læremål: Etter å ha gjennomført emnet Virtuelle Tjenere skal studenten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- ser fordeler, økonomiske og praktiske, ved å ta i bruk virtualiseringsteknologien til VMware- kjenner sentrale temaer innen drift av vSphere Infrastructure- forstår hvordan virtualisering er bygd opp FERDIGHETER:Kandidaten:- kan installere og konfigurere VMware vSphere- kan sette opp et cluster i vSphere vCenter- vise ut i fra rapporter gitt i vSphere Client om det trengs mer ressurser i opprettet cluster for dets kjørende virtuelle maskiner- forstår funksjonene vMotion, High Availability (HA) og Distributed Resource Scheduler (DRS)- kan automatisere enkle oppgaver ved bruk av PowerCLI script- kan utføre og- gjenopprette backup av virtuelle maskiner- kjenner til hvordan roller kan tildeles brukere GENERELL KOMPETANSE:Kandidaten:- har kompetanse til å besvare teoretiske problemstillinger innen virtualisering- har kompetanse til selvstendig både å ta i bruk sine kunnskaper og ferdigheter innen emnets tema i en driftssituasjon Innhold:Virtualisering med VMware.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Virtuelle Tjenere 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg   [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Oslo Bergen 1 dag 6 900 kr
13 Aug
13 Aug
29 Aug
Kom i gang med Power BI [+]
Kom i gang med Power BI [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
15 Sep
27 Oct
08 Dec
Analyserer du store datamengder? Gjør du samme import hver dag/uke/måned? Importerer du data til Excel som ikke alltid har rett format? Har du lurt på hvordan det nye ver... [+]
Kursinnhold Import av .csv Import av tekstfiler (.txt) Import fra internett Transformering av data Rette opp feil Lage beregnede kolonner Regelmessig import Analyse av store datamengder   Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder.   [-]
Les mer