IT-kurs
Kurs i programvare og applikasjoner
Du har valgt: Finnmark
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Finnmark ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Oslo 2 dager 14 500 kr
01 Sep
01 Sep
MB-210: Microsoft Dynamics 365 for Sales [+]
MB-210: Microsoft Dynamics 365 for Sales [-]
Les mer
Nettkurs 4 timer 549 kr
Adobe Audition er et profesjonelt lydredigeringsprogram for innspilling, miksing og bearbeiding av lyd. Programmet passer for alle som jobber med lyd, dette være seg: vid... [+]
Adobe Audition er et profesjonelt lydredigeringsprogram som gir deg muligheten til å spille inn, mikse og bearbeide lyd. Dette programmet er ideelt for alle som arbeider med lyd, uavhengig om det er for video, animasjon, radio, podkast eller spill. Audition støtter et bredt spekter av lydformater, inkludert ASIO, VST og MIDI. Du kan også enkelt importere prosjekter fra Adobe Premiere Pro, noe som gjør Audition til et utmerket valg for de som ønsker førsteklasses lyd til sine videoproduksjoner. For å få tilgang til Adobe Audition må du abonnere på Adobe Creative Cloud (kr 590 per måned). I dette omfattende kurset vil Espen Faugstad veilede deg gjennom hele programmet, fra begynnelse til slutt. Du vil lære alt du trenger for å kunne bruke programmet på en effektiv måte. Kurset dekker emner som hvordan du importerer, organiserer og redigerer lydfiler. Du vil også lære å fjerne bakgrunnsstøy, fremheve stemmer, legge til lydeffekter, og mye mer. Kursinnhold: Introduksjon Lydterminologi Importering av lyd Redigering med Waveform Editor (del 1) Redigering med Waveform Editor (del 2) Multitrack Editor (del 1) Multitrack Editor (del 2) Bruk av paneler og verktøy Essential Sound-panelet Eksportering av prosjekt og samarbeid med Premiere Pro Etter fullføring av kurset, vil du ha den nødvendige kunnskapen og ferdighetene til å arbeide effektivt med Adobe Audition for å oppnå høykvalitetslyd i dine prosjekter.   Varighet: 4 timer og 5 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av de beste digitale nettkursene i landet. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelige. Med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger har vi opplevd betydelig vekst de siste årene. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo 1 dag 7 900 kr
14 Aug
14 Aug
PowerPoint med Presentasjonsteknikk [+]
PowerPoint med Presentasjonsteknikk [-]
Les mer
Virtuelt klasserom 3 dager 24 500 kr
In this course students will gain the knowledge and skills needed to implement security controls, maintain the security posture, and identify and remediate vulnerabilitie... [+]
Objectives Describe specialized data classifications on Azure Identify Azure data protection mechanisms Implement Azure data encryption methods Secure Internet protocols and how to implement them on Azure Describe Azure security services and features Agenda Module 1: Identity and Access -Configure Azure Active Directory for Azure workloads and subscriptions-Configure Azure AD Privileged Identity Management-Configure security for an Azure subscription Module 2: Platform Protection -Understand cloud security-Build a network-Secure network-Implement host security-Implement platform security-Implement subscription security Module 3: Security Operations -Configure security services-Configure security policies by using Azure Security Center-Manage security alerts-Respond to and remediate security issues-Create security baselines Module 4: Data and applications -Configure security policies to manage data-Configure security for data infrastructure-Configure encryption for data at rest-Understand application security-Implement security for application lifecycle-Secure applications-Configure and manage Azure Key Vault       [-]
Les mer
Oslo 3 dager 26 900 kr
17 Sep
17 Sep
03 Dec
Kubernetes for App Developers (LFD459) [+]
Kubernetes for App Developers (LFD459) [-]
Les mer
2 dager 24 000 kr
28 Aug
23 Oct
22 Dec
SDWFND: Cisco SD WAN Operation and Deployment [+]
SDWFND: Cisco SD WAN Operation and Deployment [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
This three-day instructor-led class introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud, with a focus ... [+]
Through a combination of presentations, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems, and application services. This course also covers deploying practical solutions including securely interconnecting networks, customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring. Course Objectives This course teaches participants the following skills: Configure VPC networks and virtual machines Administer Identity and Access Management for resources Implement data storage services in Google Cloud Manage and examine billing of Google Cloud resources Monitor resources using Google Cloud services Connect your infrastructure to Google Cloud Configure load balancers and autoscaling for VM instances Automate the deployment of Google Cloud infrastructure services Leverage managed services in Google Cloud All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Google Cloud -List the different ways of interacting with Google Cloud-Use the Cloud Console and Cloud Shell-Create Cloud Storage buckets-Use the Google Cloud Marketplace to deploy solutions Module 2: Virtual Networks -List the VPC objects in Google Cloud-Differentiate between the different types of VPC networks-Implement VPC networks and firewall rules-Implement Private Google Access and Cloud NAT Module 3: Virtual Machines -Recall the CPU and memory options for virtual machines-Describe the disk options for virtual machines-Explain VM pricing and discounts-Use Compute Engine to create and customize VM instances Module 4: Cloud IAM -Describe the Cloud IAM resource hierarchy-Explain the different types of IAM roles-Recall the different types of IAM members-Implement access control for resources using Cloud IAM Module 5: Data Storage Services -Differentiate between Cloud Storage, Cloud SQL, Cloud Spanner, Cloud Firestore and Cloud Bigtable-Choose a data storage service based on your requirements-Implement data storage services Module 6: Resource Management -Describe the cloud resource manager hierarchy-Recognize how quotas protect Google Cloud customers-Use labels to organize resources-Explain the behavior of budget alerts in Google Cloud-Examine billing data with BigQuery Module 7: Resource Monitoring -Describe the services for monitoring, logging, error reporting, tracing, and debugging-Create charts, alerts, and uptime checks for resources with Cloud Monitoring-Use Cloud Debugger to identify and fix errors Module 8: Interconnecting Networks -Recall the Google Cloud interconnect and peering services available to connect your infrastructure to Google Cloud-Determine which Google Cloud interconnect or peering service to use in specific circumstances-Create and configure VPN gateways-Recall when to use Shared VPC and when to use VPC Network Peering Module 9: Load Balancing and Autoscaling -Recall the various load balancing services-Determine which Google Cloud load balancer to use in specific circumstances-Describe autoscaling behavior-Configure load balancers and autoscaling Module 10: Infrastructure Modernization -Automate the deployment of Google Cloud services using Deployment Manager or Terraform-Outline the Google Cloud Marketplace Module 11: Managed Services Describe the managed services for data processing in Google Cloud [-]
Les mer
Oslo Bergen 3 dager 27 900 kr
10 Sep
10 Sep
22 Oct
Developing on AWS [+]
Developing on AWS [-]
Les mer
2 dager 16 900 kr
Elasticsearch [+]
Elasticsearch [-]
Les mer
Nettkurs 3 timer 549 kr
Dette grunnleggende kurset om Microsoft Power BI gir deg en solid forståelse av hvordan du kan bruke dette kraftige verktøyet for datainnsamling, analyse og visualisering... [+]
Dette grunnleggende kurset om Microsoft Power BI gir deg en solid forståelse av hvordan du kan bruke dette kraftige verktøyet for datainnsamling, analyse og visualisering. Med Power BI kan du effektivt samle inn, rense, transformere, analysere og presentere data fra forskjellige kilder. Dette kurset, ledet av data scientist Aina Øverås Skott, vil hjelpe deg med å mestre Power BI Desktop og Power BI Service, slik at du kan bruke dem effektivt i din profesjonelle karriere. Kurset dekker følgende emner: Kapittel 1: Introduksjon Kapittel 2: Behandle data Kapittel 3: Sette opp datamodell Kapittel 4: Case #1 Kapittel 5: Visualisere data Kapittel 6: Beregne og analysere data Kapittel 7: Publisere og dele rapporter Kapittel 8: Case #2 Kapittel 9: Veien videre   Varighet: 2 timer og 40 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
2 dager 6 500 kr
Vil du jobbe enklere og mer effektivt i InDesign? På dette kurset vil du lære å lage gode, avanserte og tidsbesparende maler for sider, tekst og objekter, samt gjenbru... [+]
Vil du jobbe enklere og mer effektivt i InDesign? På dette kurset vil du lære å lage gode, avanserte og tidsbesparende maler for sider, tekst og objekter, samt gjenbruk via biblioteker. Etter kurset kan du lage egne maler som automatiserer mange arbeidsprosesser og sparer deg for mye tid og arbeid. Gode maler kvalitetsikrer produktetene dine og gir deg mere tid til å være kreativ. Hvem passer kurset for? Kurset passer for deg som jobber i Adobe InDesign og ønsker å utnytte programmets potensiale. Forhåndskunnskap i InDesign: «InDesign grunnkurs» eller tilsvarende kunnskap. Dette lærer du: God, effektiv og avansert bruk av maler for sider, tekst og objekter i Adobe InDesign Spar på elementer du lager med CC Libraries Lage automatisk innholdsfortegnelse Bruk av tabell Tekstlenker og registerlinjer Hvordan tilpasse en layout til ulike størrelser i samme dokument Lage egne tastatursnarveier https://igm.no/indesign-kurs-videregaende/ [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 3 timer 549 kr
God formatering handler ikke bare om å få et regneark til å se pent ut, det handler like mye om å kommunisere effektivt. Et dårlig formatert regneark vil gjøre det vanske... [+]
God formatering i Microsoft Excel handler ikke bare om å få et regneark til å se pent ut; det handler like mye om å kommunisere effektivt. Et dårlig formatert regneark kan gjøre det vanskelig å lese og forstå innholdet. Derimot vil et godt formatert regneark gjøre det enklere å absorbere informasjonen som presenteres. Dette kurset, ledet av Espen Faugstad, vil gi deg ferdighetene du trenger for å formatere data i Microsoft Excel på avansert nivå. Du vil lære hvordan du gjør regnearket mer leselig, forståelig og effektivt. Emner inkluderer formatering av tekstverdier og tallverdier, opprettelse av egendefinerte formateringsregler, tilpasning av rader, kolonner og celler, formatering av tabeller, diagrammer og bilder, og mye mer. Kurset er delt inn i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Skrift Kapittel 3: Justering Kapittel 4: Tall Kapittel 5: Stiler Kapittel 6: Celler Kapittel 7: Tabell Kapittel 8: Diagrammer Kapittel 9: Bilder Kapittel 10: Avslutning Etter å ha fullført kurset, vil du kunne bruke avansert formatering i Excel for å forbedre presentasjonen og lesbarheten av dine regneark, noe som er uvurderlig for effektiv kommunikasjon og dataanalyse.   Varighet: 2 timer og 27 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
1 dag 9 900 kr
Jira Project Administration (Cloud) [+]
Jira Project Administration (Cloud) [-]
Les mer