IT-kurs
Kurs i programvare og applikasjoner
Møre og Romsdal
Du har valgt: Gjemnes
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Gjemnes ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Majorstuen 2 dager 8 200 kr
28 Aug
06 Oct
10 Nov
Microsoft Project 365 er et av verdens mest brukte verktøy for planlegging og oppfølging av prosjekter. Dette kurset lærer deg å få kontroll på aktiviteter, ressurser, ..... [+]
Microsoft Project 365 er et av verdens mest brukte verktøy for planlegging og oppfølging av prosjekter. Dette kurset lærer deg å få kontroll på aktiviteter, ressurser, kostnader og tidsbruk. Du lærer hvordan du kan ta ut fremdriftsplaner, lage flotte rapporter og hvordan du kan gjøre nytte av Project’s automatikk for å løse opp i problemstillinger med overforbruk av tid, ressurser og kostnader.   Kursinstruktør Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer.   Kursinnhold Skriver du inn start- og sluttdato i tabell-delen og opplever at du ikke klarer å re-planlegge? Får du ikke korrekt antall timer på aktivitetene dine? Er det vanskelig å få kostnadene i Project til å stemme overens med de virkelige? Bruker du andre programmer til å lage skikkelige fremdriftsplaner? Er det vanskelig å lage forståelige rapporter? Er det vanskelig å få korrekte start-dato på aktivitetene dine? Blir hele prosjektet forskjøvet i tid når du bare gjør en liten endring?   Dette er vanlige problemstillinger mange sliter med og som blir borte etter endt kurs! På kun 2 dager vil du mestre de vanligste arbeidsoppgavene i Project. Du lærer gode rutiner og hurtigtastene du trenger for å kunne arbeide rasktog effektivt. Du vil føle deg trygg på at det er du som kontrollerer Project og ikke omvendt! Du vil også få en rekke tips og triks du kan bruke i din arbeidsdag. Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! NB: Ta med egen PC    Dag 1 Dag 1 bruker vi mest tid på aktiviteter og på å sy dem sammen til en god plan. På slutten av dagen ser vi på ressurser og kostnader og hvordan de kan håndteres av Project. Bli kjent med Project Oppstart og avslutning Åpning, lagring og lukking Visninger Nytt prosjekt Kalenderalternativer Aktiviteter Manuell planlegging Registrering av aktiviteter Redigering av aktiviteter Disposisjon Kobling av aktiviteter Tidsforskyvning Tidsbetingelser Ressurser og Kostnader Ressursliste Ressurskostnader Tildeling av ressurser Innsatsdrevet planlegging Aktivitetstyper Ressurskonflikter Faste kostnader Kostnadsinformasjon   Dag 2 Dag 2 begynner vi med repetisjon av dag 1 og deretter tar vi for oss hva som skjer når prosjektet ruller og går: Baseline, oppfølging, rapportering og hvordan få prosjektet på sporet igjen. Vi ser også på tilpasning av Project til den enkeltes behov.   Repetisjonsoppgave Oppfølging Referanseplaner Den kritiske linjen Faktiske opplysninger Sammenligning Framdriftslinje Justering av prosjektplanen Presentasjon Utskrift Rapporter Visuelle rapporter Formatering Tegning Tidslinjeverktøy Hyperkoblinger Kopiere bilder av visninger Tilpasninger Tabeller Sortering og gruppering Filtrering Egendefinerte visninger Delprosjekter WBS-nummerering   Meld deg på Project-kurs allerede i dag og sikre deg plass!   Hilsen fra fornøyde deltagere: "Bra og oversiktlig kurs. Ting som har vært uklart i forhold til "MSP" blir belyst, og man forstår logikken i programmet. Man forstår med andre ord funksjonaliteten i programmet gjennom kurset".Ken Inge Bavda- ENI Norge   "Bra og forståelig gjennomgang av innholdet. Passe fart på læringen. Flink kursinstruktør".Trude Sundblad- EVRY AS   "Kurset var lærerikt og informativt. Kursleder var faglig dyktig og hadde godt humør. Jeg hadde to lærerike dager".Christopher Rustad- Opak AS   "Føler at jeg har et godt utgangspunkt for å komme i gang med å bruke programmet. godt utgangspunkt, fornøyd med kurset, det svarte til mine forventninger".Jane-Britt Berntsen- Norwex Holding AS   [-]
Les mer
Oslo 5 dager 46 500 kr
04 Aug
15 Sep
13 Oct
ENCOR: Implementing and Operating Cisco Enterprise Network Core Technologies [+]
ENCOR: Implementing and Operating Cisco Enterprise Network Core Technologies [-]
Les mer
2 dager 12 900 kr
Ønsker du å jobbe med ulike tegninger i Visio, men føler du ikke mestrer programmet? Vil du i tillegg kunne lage egne maler for å jobbe mer effektivt? Da er ”Visio ... [+]
Ønsker du å jobbe med ulike tegninger i Visio, men føler du ikke mestrer programmet? Vil du i tillegg kunne lage egne maler for å jobbe mer effektivt? Da er ”Visio Grunnleggende” kurset for deg! Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Hva er Visio? Få oversikt. Bli kjent med programvinduet og hvordan du kan tilpasse det etter dine behov. Mal. Hvordan er en mal bygd opp og hvordan jobbe med en tegning? Formatering. Lær å formatere og hva formateringsbegrepet betyr. Sjablonger og figurer. Hva er sjablonger og figurer?   Å jobbe effektivt med Visio Bygge opp en tegning. Lær å bygge opp en tegning fra bunnen av. Hurtigtaster. Effektiv bruk av tastatur og mus. Formatering. Bruk formatering for å gjøre tegningene oversiktlige og informasjonen mest mulig tilgjengelig. Ark. Lær å jobbe med flere ark, navngi dem, slette dem, bruke bakgrunner etc. Praktisk oppgaveløsing. Jobb med skreddersydde oppgaver innenfor dagens temaer. Andre Office-programmer. Lær å bruke Visio-tegninger i andre Office-programmer.   Flytskjema og organisasjonskart Koblinger. Lær å koble figurer på en effektiv måte. Oppsett. Hvordan sørge for at figurene står plassert på en nøyaktig og oversiktlig måte? Navigasjon. Bygge opp praktisk navigasjon mellom sidene i en større tegning.   Dag 2    Nettverksdiagram Figurdata. Knytt praktisk informasjon til figurene i tegningen. Rapporter. Hvordan hente ut rapporter fra en tegning?   Prosjektplaner Tidslinje. Illustrere faser i et prosjekt på en oversiktlig måte. Gantt-diagram. Vise prosjektinformasjon på en mer detaljert måte. Utskrift. Få oversikt over de vanligste problemstillingene ved utskrift.   Egne maler Maler. Hva er maler, deres styrke og hvordan kan jeg utnytte dem best mulig i mitt arbeid? Sjablonger. Bygge opp en egen samling med de figurene du skal bruke. Figurer. Lær å lage egne tilpassede figurer. Praktisk oppgaveløsing. Jobb med skreddersydde oppgaver innenfor dagens temaer.   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Virtuelt klasserom 3 dager 16 700 kr
XML er en etablert standard for plattformuavhengig lagring og utveksling av data, der innhold og presentasjon bearbeides separat. XSL er en nøkkelteknologi innenfor utvi.... [+]
Kursinstruktør Terje Berg-Hansen Terje Berg-Hansen har bred erfaring fra prosjektledelse, utvikling og drift med små og store databaser, både SQL- og NoSQL-baserte. I tillegg til å undervise i etablerte teknologier leder han også Oslo Hadoop User Group, og er levende interessert i nye teknologier, distribuerte databaser og Big Data Science.    Kursinnhold XML er en etablert standard for plattformuavhengig lagring og utveksling av data, der innhold og presentasjon bearbeides separat. XSL er en nøkkelteknologi innenfor utvikling og nyttiggjørelse av XML. Viktige hoveddeler innenfor XSL er XSLT, XSL-FO og XPath. Kurset gir deltakerne en innføring i XSL . Vi ser på hvilke muligheter vi har for bearbeiding av XML-data, og hvordan vi kan gjøre data tilgjengelig for presentasjon.   Du får en gjennomgang i: Introduksjon til XML, XSL og XSLT. Introduksjon til XPath og XQuery. Bruk av XSLT-maler og Xpath-uttrykk for å søke etter data i XML-dokumenter. Transformering av XML-dokumenter til xml, html og tekstdokumenter. Introduksjon til XSL-FO og produksjon av svg- og pdf-dokumenter Design og formatering av ouput fra XSLT-transformasjoner Sortering, gruppering og kombinering av XML-dokumenter Bruk av XSLT-verktøy til transformering og søk.   Målsetting Etter endt kurs skal kursdeltakerne blant annet vite hvordan man filtrerer, sorterer og transformerer XML-data, samt hvilke muligheter man har for å trekke inn annet innhold/data for presentasjon.   Gjennomføring Kurset gjennomføres med en kombinasjon av online læremidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvelsesoppgaver til hovedtemaene som gjennomgås.   [-]
Les mer
Virtuelt klasserom 1 dag 4 500 kr
Er du allerede en erfaren PowerPoint-bruker, men ønsker å lære deg mer om de avanserte mulighetene? Dette kurset egner seg for deg som skal markedsføre noe eller som ... [+]
Kursinstruktør   Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer. Kursinstruktør   Jonny Austad Jonny Austad er utdannet som Adjunkt og har jobbet som lærer og instruktør siden 1989. Han har dessuten jobbet mye med support og drifting av nettverk og vet som oftest hva som er vanlige problemer ute i bedriftene. Han var den første Datakort-læreren i landet (høsten 1997), og har Office-pakken med spesielt Excel som sitt hjertebarn. Jonny er en meget hyggelig og utadvendt person som elsker å undervise med smarte løsninger på problemer samt vise smarte tips og triks i de ulike programmene. Kursinnhold Dette kurset lærer deg å håndtere ressurser, aktiviteter og budsjett. Du kan opprette, oppdatere og gjøre enkel oppfølging i et prosjekt. Vi går igjennom hvordan du, både grafisk og i tekst, ser effekten av forandringer i prosjekt og hvordan du kan skrive ut dine prosjektplaner. Målet med kurset er å gi deg en prossessorientert tilnærming i MS Project slik at du er i stand til å arbeide målrettet og effektivt med programvaren etter kurset. Sett opp Project for bruk i din bedrift – tips og triks. Lag egne kalendere for enkeltpersoner og/eller grupper. Hold oversikt over tids- og ressursbruk. Vit hvem som jobber hvor – på tvers av prosjekter. Kontroller kostnadene i prosjektet. Ta hensyn til lønnsøkningerog variable kostnader. Vis og kontroller hvordan prosjektet går i forhold til opprinnelig plan (Baseline). Presenter fremdrift på papir og på nett. Utnytt de nye rapportmulighetene. Ta hensyn til at arbeid noen ganger foregår på kvelden og i helger. Se hvordan du kan få vakre utskrifter med egendefinertekomponenter ved hjelp av Project 2016 sine rapportegenskaper. Lag dine egne tabeller og visninger, skreddersydd til ditt bruk. Gjør rapportering og oppfølging enkel slik at du kan konsentrere deg om å lede prosjektet. Bruk tidslinje for enkelkommunikasjon av fremdrift. Kommunikasjon med andre programmer. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Project erfaring som de gjerne deler med deg! Meld deg på Project-kurs allerede i dag og sikre deg plass!  Av innhold kan vi nevne:   Innstilling av programvaren – en reprise fra grunnkurset Hva vil jeg ha ut av mine planer og hvordan får jeg det Effektiv og målrettet planlegging Bruk av ressurspool – Ressursstyring på tvers av prosjekter Integrasjon og kobling mot Excel i rapportering og kostnadsoppfølging En grundig gjennomgang av mulighetene i Project Bygg dine egne rapporter og visninger Bruk av flere kalendere Detaljert budsjettering og kostnadsoppfølging Få hjelp og råd med dine konkrete utfordringer i Project [-]
Les mer
Oslo 2 dager 18 900 kr
06 Nov
06 Nov
MoP® Practitioner [+]
MoP® Practitioner [-]
Les mer
Oslo Bergen 5 dager 27 500 kr
15 Sep
15 Sep
20 Oct
AZ-104: Microsoft Azure Administrator [+]
AZ-104: Microsoft Azure Administrator [-]
Les mer
Oslo 3 dager 22 000 kr
01 Sep
01 Sep
17 Nov
ArchiMate® 3 Training Course Combined Foundation and Practitioner [+]
ArchiMate® 3 Training Course Combined Foundation and Practitioner [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
In this course, application developers learn how to design, develop, and deploy applications that seamlessly integrate components from the Google Cloud ecosystem. [+]
Through a combination of presentations, demos, and hands-on labs, participants learn how to use GCP services and pre-trained machine learning APIs to build secure, scalable, and intelligent cloud-native applications. Objectives This course teaches participants the following skills: Use best practices for application development Choose the appropriate data storage option for application data Implement federated identity management Develop loosely coupled application components or microservices Integrate application components and data sources Debug, trace, and monitor applications Perform repeatable deployments with containers and deployment services Choose the appropriate application runtime environment; use Google Container Engine as a runtime environment and later switch to a no-ops solution with Google App Engine Flex All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Best Practices for Application Development -Code and environment management-Design and development of secure, scalable, reliable, loosely coupled application components and microservices-Continuous integration and delivery-Re-architecting applications for the cloud Module 2: Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK -How to set up and use Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK-Lab: Set up Google Client Libraries, Google Cloud SDK, and Firebase SDK on a Linux instance and set up application credentials Module 3: Overview of Data Storage Options -Overview of options to store application data-Use cases for Google Cloud Storage, Google Cloud Datastore, Cloud Bigtable, Google Cloud SQL, and Cloud Spanner Module 4: Best Practices for Using Cloud Datastore -Best practices related to the following:-Queries-Built-in and composite indexes-Inserting and deleting data (batch operations)-Transactions-Error handling-Bulk-loading data into Cloud Datastore by using Google Cloud Dataflow-Lab: Store application data in Cloud Datastore Module 5: Performing Operations on Buckets and Objects -Operations that can be performed on buckets and objects-Consistency model-Error handling Module 6: Best Practices for Using Cloud Storage -Naming buckets for static websites and other uses-Naming objects (from an access distribution perspective)-Performance considerations-Setting up and debugging a CORS configuration on a bucket-Lab: Store files in Cloud Storage Module 7: Handling Authentication and Authorization -Cloud Identity and Access Management (IAM) roles and service accounts-User authentication by using Firebase Authentication-User authentication and authorization by using Cloud Identity-Aware Proxy-Lab: Authenticate users by using Firebase Authentication Module 8: Using Google Cloud Pub/Sub to Integrate Components of Your Application -Topics, publishers, and subscribers-Pull and push subscriptions-Use cases for Cloud Pub/Sub-Lab: Develop a backend service to process messages in a message queue Module 9: Adding Intelligence to Your Application -Overview of pre-trained machine learning APIs such as Cloud Vision API and Cloud Natural Language Processing API Module 10: Using Cloud Functions for Event-Driven Processing -Key concepts such as triggers, background functions, HTTP functions-Use cases-Developing and deploying functions-Logging, error reporting, and monitoring Module 11: Managing APIs with Google Cloud Endpoints -Open API deployment configuration-Lab: Deploy an API for your application Module 12: Deploying an Application by Using Google Cloud Build, Google Cloud Container Registry, and Google Cloud Deployment Manager -Creating and storing container images-Repeatable deployments with deployment configuration and templates-Lab: Use Deployment Manager to deploy a web application into Google App Engine flexible environment test and production environments Module 13: Execution Environments for Your Application -Considerations for choosing an execution environment for your application or service:-Google Compute Engine-Kubernetes Engine-App Engine flexible environment-Cloud Functions-Cloud Dataflow-Lab: Deploying your application on App Engine flexible environment Module 14: Debugging, Monitoring, and Tuning Performance by Using Google Stackdriver -Stackdriver Debugger-Stackdriver Error Reporting-Lab: Debugging an application error by using Stackdriver Debugger and Error Reporting-Stackdriver Logging-Key concepts related to Stackdriver Trace and Stackdriver Monitoring.-Lab: Use Stackdriver Monitoring and Stackdriver Trace to trace a request across services, observe, and optimize performance [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 1 time 549 kr
En pivottabell er et kraftig verktøy i Microsoft Excel som gjør at du kan beregne, summere og analysere store mengder data på en rask og effektiv måte. En pivottabell kan... [+]
En pivottabell er et kraftig verktøy i Microsoft Excel som gjør at du kan beregne, summere og analysere store mengder data på en rask og effektiv måte. En pivottabell kan brukes til å analysere numeriske data og til å besvare uventede spørsmål om dataen. Kort fortalt, en pivottabell hjelper deg med å ta informerte beslutninger basert på funnene i dataene dine. I dette kurset, ledet av Espen Faugstad, vil du lære alt du trenger å vite for å jobbe med pivottabeller i Microsoft Excel. Kurset vil dekke hva en pivottabell er, hvordan du klargjør data, organiserer data, formaterer data, presenterer data, og mye mer. For å ta dette kurset, bør du ha grunnleggende forståelse av Microsoft Excel. Kurset er strukturert i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Grunnleggende Kapittel 3: Viderekommen Kapittel 4: Avslutning Etter å ha fullført kurset vil du være i stand til å bruke pivottabeller til å analysere data, trekke innsikter og ta informerte beslutninger basert på dataene i Excel.   Varighet: 1 time   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettkurs 2 timer 549 kr
Vil du lære å utnytte mer av Microsoft Teams? Da anbefaler vi vårt nye nettkurs med videoundervisning, utviklet av ekspertinstruktør Espen Faugstad. Kurset er skreddersyd... [+]
Oppdag kraften i effektivt samarbeid med Microsoft Teams gjennom dette omfattende nettkurset ledet av Espen Faugstad. Kurset er skreddersydd for å gi deg en grundig forståelse av Teams' funksjoner, slik at du kan styrke kommunikasjon og samarbeid i organisasjonen din. Lær å navigere i Teams, administrere teams og kanaler, chatte effektivt, holde møter, og dele filer, samt integrere med andre Microsoft 365-applikasjoner og tredjepartsverktøy. Dette kurset er ideelt for alle roller – fra de som er ansvarlige for administrasjonen av Microsoft Teams, til teamledere som ønsker å forbedre samarbeidet, og ansatte som ønsker å jobbe mer effektivt. Meld deg på i dag for å bli en ekspert i Microsoft Teams og ta skrittet mot en mer effektiv og produktiv arbeidshverdag med veiledning fra Espen Faugstad.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Kom i gang Kapittel 3: Teams og kanaler Kapittel 4: Kommunikasjon Kapittel 5: Møter og videosamtaler Kapittel 6: Filhåndtering og samarbeid Kapittel 7: Ekstra funksjonalitet Kapittel 8: Avslutning   Varighet: 1 time og 47 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Majorstuen 2 dager 7 900 kr
21 Aug
17 Sep
29 Oct
På dette kurset får du en god oversikt over mulighetene i Excel. Du får nyttige tips som forenkler arbeidshverdagen din, og lærer de viktigste funksjonene for å komme i g... [+]
Bruker du mye tid i Excel på å få gjort enkle arbeidsoppgaver? Kommer det til stadighet prosent og dato i celler hvor du vil ha vanlige tall? Blir en formel ødelagt når du flytter den? Er det vanskelig å lage det diagrammet du ønsker? Blir ikke utskriftene dine slik du ønsker? Dette er vanlige problemstillinger mange sliter med og som blir borte etter endt kurs! På kun 2 dager vil du mestre de vanligste formler og funksjoner du trenger i din arbeidsdag. Du lærer gode rutiner og hurtigtastene du trenger for å kunne arbeide raskt og effektivt. Du vil kunne bygge alt fra enkle til mer avanserte modeller og vil føle deg trygg på at modellen din virker og gir rett resultat. Du vil også få en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert!   Kursholderne har mer enn 20 års Excel erfaring som de gjerne deler med deg!   Kurset passer for deg med liten erfaring og som ønsker å lære Excel fra grunnen av. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Meld deg på Excel-kurs allerede i dag og sikre deg plass!   Krav til forkunnskaper Grunnleggende kunnskaper i Windows.   Kursinnhold Redigering Merking Sletting Angre muligheter Flytting og kopiering Innsetting og sletting Formler Bruk av formler Autofyll Cellereferanser Formatering Hva er formatering? Kolonnebredde og radhøyde Tallformatering Skriftformatering Justering av celleinnhold Kantlinjer og fyllfarger Betinget formatering Funksjoner Bruk av funksjoner Summering Minst, størst, antall og gjennomsnitt Hvis-funksjonen Betinget summering Diagram Utforming av diagram Diagramtyper Flere regneark Arbeid med regneark Innsetting og sletting av regneark Flytting og kopiering av regneark Referering til andre regneark Enkle formler på tvers av ark Vindus håndtering Lister og tabeller Sortering Tabeller Filtrering Deling og frysing av vindu   [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led class provides an overview of Google Cloud Platform products and services. Through a combination of presentations and hands-on labs, participa... [+]
Objectives This course teaches participants the following skills: Identify the purpose and value of each of the Google Cloud Platform products and services Interact with Google Cloud Platform services Describe ways in which customers have used Google Cloud Platform Choose among and use application deployment environments on Google Cloud Platform: Google App Engine, Google Kubernetes Engine, and Google Compute Engine Choose among and use Google Cloud Platform storage options: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore Make basic use of BigQuery, Google’s managed data warehouse for analytics Make basic use of Cloud Deployment Manager, Google’s tool for creating and managing cloud resources through templates Make basic use of Google Stackdriver, Google’s monitoring, logging, and diagnostics system All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud Platform -Explain the advantages of Google Cloud Platform-Define the components of Google's network infrastructure, including: Points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud Platform -Identify the purpose of projects on Google Cloud Platform-Understand the purpose of and use cases for Identity and Access Management-List the methods of interacting with Google Cloud Platform-Lab: Getting Started with Google Cloud Platform Module 3: Virtual Machines and Networks in the Cloud -Identify the purpose of and use cases for Google Compute Engine.-Understand the various Google Cloud Platform networking and operational tools and services.-Lab: Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore.-Learn how to choose between the various storage options on Google Cloud Platform.-Lab: Cloud Storage and Cloud SQL Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers.-Identify the purpose of and use cases for Google Kubernetes Engine and Kubernetes.-Lab: Kubernetes Engine Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine.-Contrast the App Engine Standard environment with the App Engine Flexible environment.-Understand the purpose of and use cases for Google Cloud Endpoints.-Lab: App Engine Module 7: Developing, Deploying, and Monitoring in the Cloud -Understand options for software developers to host their source code.-Understand the purpose of template-based creation and management of resources.-Understand the purpose of integrated monitoring, alerting, and debugging.-Lab: Deployment Manager and Stackdriver Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms.-Lab: BigQuery [-]
Les mer