IT-kurs
Kurs i programvare og applikasjoner
Du har valgt: Hjärnarp
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Hjärnarp ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
1 dag 8 000 kr
This course introduces fundamentals concepts related to artificial intelligence (AI), and the services in Microsoft Azure that can be used to create AI solutions. [+]
COURSE OVERVIEW The course is not designed to teach students to become professional data scientists or software developers, but rather to build awareness of common AI workloads and the ability to identify Azure services to support them. The course is designed as a blended learning experience that combines instructor-led training with online materials on the Microsoft Learn platform (https://azure.com/learn). The hands-on exercises in the course are based on Learn modules, and students are encouraged to use the content on Learn as reference materials to reinforce what they learn in the class and to explore topics in more depth. TARGET AUDIENCE The Azure AI Fundamentals course is designed for anyone interested in learning about the types of solution artificial intelligence (AI) makes possible, and the services on Microsoft Azure that you can use to create them. You don’t need to have any experience of using Microsoft Azure before taking this course, but a basic level of familiarity with computer technology and the Internet is assumed. Some of the concepts covered in the course require a basic understanding of mathematics, such as the ability to interpret charts. The course includes hands-on activities that involve working with data and running code, so a knowledge of fundamental programming principles will be helpful. COURSE OBJECTIVES  After completing this course, you will be able to: Describe Artificial Intelligence workloads and considerations Describe fundamental principles of machine learning on Azure Describe features of computer vision workloads on Azure Describe features of Natural Language Processing (NLP) workloads on Azure Describe features of conversational AI workloads on Azure   COURSE CONTENT Module 1: Introduction to AI In this module, you'll learn about common uses of artificial intelligence (AI), and the different types of workload associated with AI. You'll then explore considerations and principles for responsible AI development. Artificial Intelligence in Azure Responsible AI After completing this module you will be able to Describe Artificial Intelligence workloads and considerations Module 2: Machine Learning Machine learning is the foundation for modern AI solutions. In this module, you'll learn about some fundamental machine learning concepts, and how to use the Azure Machine Learning service to create and publish machine learning models. Introduction to Machine Learning Azure Machine Learning After completing this module you will be able to Describe fundamental principles of machine learning on Azure Module 3: Computer Vision Computer vision is a the area of AI that deals with understanding the world visually, through images, video files, and cameras. In this module you'll explore multiple computer vision techniques and services. Computer Vision Concepts Computer Vision in Azure After completing this module you will be able to Describe features of computer vision workloads on Azure Module 4: Natural Language Processing This module describes scenarios for AI solutions that can process written and spoken language. You'll learn about Azure services that can be used to build solutions that analyze text, recognize and synthesize speech, translate between languages, and interpret commands. After completing this module you will be able to Describe features of Natural Language Processing (NLP) workloads on Azure Module 5: Conversational AI Conversational AI enables users to engage in a dialog with an AI agent, or *bot*, through communication channels such as email, webchat interfaces, social media, and others. This module describes some basic principles for working with bots and gives you an opportunity to create a bot that can respond intelligently to user questions. Conversational AI Concepts Conversational AI in Azure After completing this module you will be able to Describe features of conversational AI workloads on Azure   TEST CERTIFICATION Recommended as preparation for the following exams: Exam AI-900: Microsoft Azure AI Fundamentals. HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
2 dager 11 900 kr
Jobb mer effektivt i Word [+]
Jobb mer effektivt i Word [-]
Les mer
Oslo 1 dag 7 900 kr
14 Aug
14 Aug
PowerPoint med Presentasjonsteknikk [+]
PowerPoint med Presentasjonsteknikk [-]
Les mer
Virtuelt klasserom 5 dager 31 000 kr
This five-day VMware course features intensive hands-on training that focuses on installing, configuring, and managing VMware vSphere 8, which includes VMware ESXi 8 and ... [+]
COURSE OVERVIEW  This course prepares you to administer a vSphere infrastructure for an organization of any size. This course is the foundation for most VMware technologies in the software-defined data center. Product Alignment: VMware ESXi 8.0 VMware vCenter 8.0 TARGET AUDIENCE System administrators System engineers COURSE OBJECTIVES By the end of the course, you should be able to meet the following objectives: Install and configure ESXi hosts Deploy and configure vCenter Use the vSphere Client to create the vCenter inventory and assign roles to vCenter users Create virtual networks using vSphere standard switches and distributed switches Create and configure datastores using storage technologies supported by vSphere Use the vSphere Client to create virtual machines, templates, clones, and snapshots Create content libraries for managing templates and deploying virtual machines Manage virtual machine resource allocation Migrate virtual machines with vSphere vMotion and vSphere Storage vMotion Create and configure a vSphere cluster that is enabled with vSphere High Availability (HA) and vSphere Distributed Resource Scheduler Manage the life cycle of vSphere to keep vCenter, ESXi hosts, and virtual machines up to date COURSE CONTENT 1 Course Introduction Introductions and course logistics Course objectives 2 vSphere and Virtualization Overview Explain basic virtualization concepts Describe how vSphere fits in the software-defined data center and the cloud infrastructure Recognize the user interfaces for accessing vSphere Explain how vSphere interacts with CPUs, memory, networks, storage, and GPUs 3 Installing and Configuring ESXi Install an ESXi host Recognize ESXi user account best practices Configure the ESXi host settings using the DCUI and VMware Host Client 4 Deploying and Configuring vCenter Recognize ESXi hosts communication with vCenter Deploy vCenter Server Appliance Configure vCenter settings Use the vSphere Client to add and manage license keys Create and organize vCenter inventory objects Recognize the rules for applying vCenter permissions View vCenter logs and events 5 Configuring vSphere Networking Configure and view standard switch configurations Configure and view distributed switch configurations Recognize the difference between standard switches and distributed switches Explain how to set networking policies on standard and distributed switches 6 Configuring vSphere Storage Recognize vSphere storage technologies Identify types of vSphere datastores Describe Fibre Channel components and addressing Describe iSCSI components and addressing Configure iSCSI storage on ESXi Create and manage VMFS datastores Configure and manage NFS datastores 7 Deploying Virtual Machines Create and provision VMs Explain the importance of VMware Tools Identify the files that make up a VM Recognize the components of a VM Navigate the vSphere Client and examine VM settings and options Modify VMs by dynamically increasing resources Create VM templates and deploy VMs from them Clone VMs Create customization specifications for guest operating systems Create local, published, and subscribed content libraries Deploy VMs from content libraries Manage multiple versions of VM templates in content libraries 8 Managing Virtual Machines Recognize the types of VM migrations that you can perform within a vCenter instance and across vCenter instances Migrate VMs using vSphere vMotion Describe the role of Enhanced vMotion Compatibility in migrations Migrate VMs using vSphere Storage vMotion Take a snapshot of a VM Manage, consolidate, and delete snapshots Describe CPU and memory concepts in relation to a virtualized environment Describe how VMs compete for resources Define CPU and memory shares, reservations, and limits 9 Deploying and Configuring vSphere Clusters Create a vSphere cluster enabled for vSphere DRS and vSphere HA View information about a vSphere cluster Explain how vSphere DRS determines VM placement on hosts in the cluster Recognize use cases for vSphere DRS settings Monitor a vSphere DRS cluster Describe how vSphere HA responds to various types of failures Identify options for configuring network redundancy in a vSphere HA cluster Recognize vSphere HA design considerations Recognize the use cases for various vSphere HA settings Configure a vSphere HA cluster Recognize when to use vSphere Fault Tolerance 10 Managing the vSphere Lifecycle Enable vSphere Lifecycle Manager in a vSphere cluster Describe features of the vCenter Update Planner Run vCenter upgrade prechecks and interoperability reports Recognize features of vSphere Lifecycle Manager Distinguish between managing hosts using baselines and managing hosts using images Describe how to update hosts using baselines Describe ESXi images Validate ESXi host compliance against a cluster image and update ESXi hosts Update ESXi hosts using vSphere Lifecycle Manager Describe vSphere Lifecycle Manager automatic recommendations Use vSphere Lifecycle Manager to upgrade VMware Tools and VM hardware   [-]
Les mer
Oslo Bergen 3 dager 27 900 kr
24 Sep
24 Sep
26 Nov
Architecting on AWS [+]
Architecting on AWS [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excelkurs Basis - elæringskurs [+]
Excelkurs Basis - elæringskurs [-]
Les mer
Nettkurs 2 timer 1 990 kr
Er dokumentet ditt blitt så stort og uoversiktlig at det er vanskelig å redigere og vedlikeholde? Få kontrollen tilbake med smart oppbygging av dokumenter! [+]
Er dokumentet ditt blitt så stort og uoversiktlig at det er vanskelig å redigere og vedlikeholde? Få kontrollen tilbake med smart oppbygging av dokumenter! Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Lage innholdsfortegnelse for hele/ deler av et dokument Bruk av overskriftsstiler Inkludere egne «overskrifter» i innholdsfortegnelsen   Referanser Kryssreferanser: Henvisninger til ulike steder i dokumentet Lage bildetekstliste (innholdsfortegnelse for tabeller, bilder, figurer osv.) Sette inn fotnote/ sluttnote   Generelt Litt om topp- og bunntekst Tekstflyt i dokumentet   3 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Gratis support [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excel for Økonomer - elæringskurs [+]
Excel for Økonomer - elæringskurs [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til grunnleggende programmeringsprinsipper som variabler, datatyper, kontrollstrukturer (løkker og beslutninger), matriser (arrays), egendefinerte funksjoner... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: 6 AV 10 øvinger må være godkjent for å kunne gå opp til eksamen. Vurderingsform: En individuell 4-timers nettbasert hjemmeeksamen. Ansvarlig: Svend Andreas Horgen Eksamensdato: 17.12.13 / 20.05.14         Læremål: KUNNSKAPER:Kandidaten:- kan forklare hva et program er- kan redegjøre for grunnleggende byggestener i programmering, så som variabler, kontrollstrukturer, matriser (arrays) og funksjoner- kan analysere en spesiell problemstilling og planlegge hvordan den kan løses generelt med programkode FERDIGHETER:Kandidaten:- kan bruke et .NET-basert utviklingsmiljø i kodeutvikling- kan lage funksjonelle brukergrensesnitt- kan identifisere feil i programkode- kan lage strukturert programkode som løser enkle problemstillinger- kan anvende innebygde funksjoner fra .NET-rammeverket i egen kode GENERELL KOMPETANSE:Kandidaten:- er bevisst på viktigheten av å eliminere feilsituasjoner Innhold:Introduksjon til grunnleggende programmeringsprinsipper som variabler, datatyper, kontrollstrukturer (løkker og beslutninger), matriser (arrays), egendefinerte funksjoner og innebyde funksjoner. Utforme brukergrensesnitt som er fine å se på og enkle å bruke. Feilhåndtering. Strukturere og planlegge koden på en god måte.Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Programmering i Visual Basic 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Nettkurs 2 timer 1 690 kr
Jobber du med store datamengder? Vil du få kontroll over dataene dine? Har du problemer med utskrift fra Excel? Her vil du få kjennskap til en rekke gode metoder for å... [+]
  Jobber du med store datamengder? Vil du få kontroll over dataene dine? Har du problemer med utskrift fra Excel? Her vil du få kjennskap til en rekke gode metoder for å jobbe med lister.  Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Prinsipper for å arbeide med lister  Få med deg råd og regler som gjelder for et godt grunnlag   Effektiv merking og navigasjon   Flere måter å sortere grunnlaget på  Sortering etter verdier Sortering etter cellefarge, skriftfarge og celleikon Sortering etter egendefinert liste   Delsammendrag  Lag enkle rapporter ved å bruke delsammendrag verktøyet Kopiere delsammendrag   Filtrering  Se hvordan du finner relevante data i et stort grunnlag Filtrering etter farge og ikon   Fryse første rad og første kolonne     Skjule / vise rader og kolonner     Utskriftinnstillinger  Tilpass utskrift til en side Gjenta rader eller kolonner ved utskrift av flere sider Tilpass utskriftområdet     [-]
Les mer
1 dag 3 700 kr
Kurset i Google Analytics er for deg som ønsker å øke den relevante trafikken til dine nettsteder. Det holder ikke med å øke trafikken til nettsidene, om brukerne ik... [+]
Kursinnhold: De ulike begrepene som blir brukt i Google Analytics Segmentering av brukere i statistikken Hvordan lese relevant statistikk Hva du kan bruke tallene til videre i din markedsføring Hvordan nettsidene dine fungerer og hvor konverteringene kommer fra [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
15 Sep
27 Oct
08 Dec
Tanken med dette kurset er å vise litt av hva makroer i Excel er og dermed gi deltakerne en forsmak på våre mer avanserte kurs i Visual Basic for Applications (VBA). Dett... [+]
Introduksjon til VBA   Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Autodesk 3ds Max er tilpasset arkitekter, ingeniører, designere og visualiseringseksperter, som leveres med en helt unik funksjonalitet for analyse av lysdistribusjon. [+]
Fleksible kurs for fremtiden Ny kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   3ds Max grunnkurs   Lag fotorealistiske presentasjoner av dine designløsninger! Her er et utvalg av temaene du vil lære på kurset: Grunnleggende funksjoner – Transformationer vha. move, rotate og scale Link til og import av DWG- og DXF-filer Lyssetning med standard lys Rendering med Scanline renderen og Mental Ray – Basics Editering av 2D- og 3D-geometri Dette kurset er tilpasset for arkitekter, ingeniører, designere og visualiseringseksperter, og gir en introduksjon til design og visualisering i 3ds MAX. Kurset vil gjøre deg i stand til å arbeide med lys, materialer og kamera i eksisterende 3D CAD/BIM-modeller.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer