IT-kurs
Kurs i programvare og applikasjoner
Vestland
Du har valgt: Hjelmås
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Hjelmås ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Klasserom + nettkurs 2 semester 45 000 kr
Mange arbeidsgivere etterspør kunnskap om digital markedsføring. Lær deg å lage godt, engasjerende digitalt innhold brukerne dine vil ha. [+]
Etter kurset Digital markedsføring, skal du ha grunnleggende kunnskaper innen dataanalyse og kjenne til digitale mediers rolle innen markedsføring. Du skal beherske digital markedsføring, strategi og planlegging, samt jus og etikk innenfor samme tema. Du skal bli i stand til å analysere effekten av strategi og kampanjer. Du skal vite hvordan nettsidene optimaliseres, samt hvordan man etablerer og drifter digitale annonser. Du skal kunne lede digitale kampanjer og ha kunnskap om hvilken betydning en god digital strategi har innen digital markedsføring. Studiet er både praktisk og teoretisk rettet – med hovedvekt på å løse praktiske obligatoriske oppgaveløsning basert på teoretisk kunnskap. Studentene vil gjennom studieåret gjennomføre en rekke individuelle og gruppebaserte praktiske og teoretiske oppgaver knyttet til de forskjellige undertema. [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 180 dager 12 000 kr
Elæring CCNA: Implementing and Administering Cisco Solutions [+]
CCNA: Implementing and Administering Cisco Solutions [-]
Les mer
2 dager 7 900 kr
Etter fullført kurs skal du kunne tegne illustrasjoner og logoer, klargjøre illustrasjoner for utkjøring og ha oversikt over programmets bruksområder. [+]
Vil du lære å tegne illustrasjoner og logoer til bruk i alle medier? Illustrator tegner vektorgrafikk som kan forstørres ubegrenset, uten å tape kvalitet og kan derfor brukes overalt. Adobe Illustrator er verktøyet for illustratører og grafiske designere, men også et program for deg som vil lage litt enklere illustrasjoner til internett, Power Point og Word. På kurset lærer du å ta utgangspunkt i enkle basisformer og kombinere dem til kompliserte figurer, slik at det blir det lett for alle å tegne. Hvorfor ta dette kurset: Du får en grundig innføring i programmet Du vil lære konkrete tegne- og designoppgaver Du vil lære å redigere/endre Illustrator-filer du mottar Du vil lære å lage illustrasjoner og logoer Du vil lære å lage grafikk for bruk på internett, lesebrett eller mobil Du vil lære effektive arbeidsmetoder Du får kontroll på tegninger med mange elementer og lag Du vil lære om fargebruk og klargjøring av filer for trykk og nett Dette lærer du: Arbeidsmiljøet i programmet Tegning med tegneverktøyene og ved å kombinere enkle grunnformer Redigering og transformering av objekter Innsetting av tekst og bilder Tekstbearbeiding Lage bannerannonser Bruk av farger og forløpninger Lag og gjennomsiktighet [-]
Les mer
Nettkurs 9 timer 549 kr
Kreativitet er overalt. Og med dette kurset får du verdens beste programvare for kreativitet, bildebehandling og grafisk design i fingerspissene. Adobe Photoshop setter i... [+]
Bli en ekspert i verdens ledende programvare for digital bildebehandling og grafisk design med kurset "Photoshop: Komplett". Ledet av sertifisert Photoshop-ekspert Espen Faugstad hos Utdannet.no, er dette kurset perfekt for alle som ønsker å utforske og mestre Adobe Photoshop, et verktøy sentralt i nesten alle kreative prosjekter. Dette omfattende kurset tar deg gjennom alle aspekter av Photoshop, fra grunnleggende til avanserte teknikker. Du vil lære alt fra å åpne og håndtere dokumenter, jobbe med lag, utføre markeringer og beskjæringer, til avansert retusjering og redigering. Kurset dekker også bruk av justeringer, masker, effekter, blend modes og filtre. Med praktiske prosjekter og eksempler vil du utvikle ferdigheter som gjør deg i stand til å løse komplekse og kreative utfordringer, og ved kursets slutt vil du ha oppnådd en dyptgående forståelse og kompetanse i Photoshop. Dette kurset vil utruste deg med kunnskapen og ferdighetene som trengs for å utnytte Photoshop i full skala, enten for personlig bruk eller i en profesjonell sammenheng.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Åpne Kapittel 3: Dokument Kapittel 4: Image Kapittel 5: Layers Kapittel 6: Markere Kapittel 7: Beskjære Kapittel 8: Retusjere Kapittel 9: Verktøy Kapittel 10: Adjustments Kapittel 11: Masker Kapittel 12: Effekter Kapittel 13: Blend Modes Kapittel 14: Filter Kapittel 15: Prosjekter Kapittel 16: Eksportere Kapittel 17: Avslutning   Varighet: 8 timer og 59 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
13 timer
Grunnleggende Excel [+]
Her starter vi ganske på begynnelsen, og går ut fra at deltagerne har liten eller ingen erfaring med Excel. Vi starter med de grunnleggende prinsippene, og bygger så videre på dem. I stikkordsform ser innholdet ut slik: Regnearkets oppbygning – grunnprinsipper Tall og tekst – identifisere og korrigere/konvertere Listefunksjonalitet – sortere, filtrere, redigere, skrive ut, etc. Grunnleggende formelbygging – de fire regneartene Kopiering av formler – absolutte og relative referanser Sentrale funksjoner: SUMMER, GJENNOMSNITT, HVIS,   HVISFEIL Modellbyggingsteknikker - sammendrag av data over flere ark Grafiske fremstillinger av numeriske data Identifisere og fjerne duplikatverdier fra en liste Arbeide med tid (dager, klokkeslett, etc.) i Excel [-]
Les mer
Nettkurs 6 timer 549 kr
I dette kurset lærer du å bruke Adobe Premiere Pro på et profesjonelt nivå – og det kreves ingen forkunnskaper for å ta kurset. I begynnelsen av kurset lærer du å opprett... [+]
Bli en mester i videoredigering med Adobe Premiere Pro gjennom dette dyptgående kurset ledet av Espen Faugstad, en erfaren kursholder hos Utdannet.no. Dette kurset krever ingen forkunnskaper og tar deg med fra grunnleggende til avanserte teknikker i Premiere Pro. Det er ideelt for alle som ønsker å lære profesjonell videoredigering, enten for personlig bruk eller for å utvikle karrieren som klipper. Kurset dekker alt fra opprettelse av prosjekter, organisering av filer, redigering av video og lyd, til bruk av effekter, overganger, og fargekorrigering. Du vil også lære å opprette titler, teksting, og bruke animasjon for å gi dine videoer et profesjonelt uttrykk. Ved kursets slutt vil du ha opparbeidet deg all den kunnskapen som trengs for å jobbe som en profesjonell videoredigerer.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Prosjekter Kapittel 3: Importere filer Kapittel 4: Redigere video Kapittel 5: Teknikker Kapittel 6: Redigere lyd Kapittel 7: Effekter og overganger Kapittel 8: Titler, grafikk og teksting Kapittel 9: Animere Kapittel 10: Fargekorrigere Kapittel 11: Eksportere Kapittel 12: Avslutning   Varighet: 6 timer og 5 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettkurs 12 måneder 10 900 kr
This course comprehensively covers the ArchiMate® 3 modeling language and how it can be practically applied when creating enterprise architecture models. [+]
This course is ideal for individuals or teams who wish to build a solid understanding of ArchiMate 3 and develop architecture artifacts using ArchiMate. What's new in ArchiMate 3.0? Like ArchiMate 2, ArchiMate 3 is a comprehensive modeling language that allows architects to create commonly understood and integrated visualizations of the essential enterprise architecture domains. Published as an Open Group Standard in June 2016, the ArchiMate 3 specification is a major update to ArchiMate 2.1. New features in version 3 include:• New concepts - Strategy and Motivation• New entities – Application, Technology and Implementation layers• Better ways to connect planning with implementation• Improvements in cross-layer relationships• New ‘Physical’ layer• Improvements in the viewpoints definition mechanism   Examination Certification in ArchiMate requires you to pass both a Foundation exam and a Certified exam.The Foundation exam is a closed book, multiple choice exam consisting of 40 questions. There is a time limit of 60 minutes and the pass-rate is 60%.After passing the Foundation exam you can then move onto the Practitioner exam, which is an open book, multiple choice exam consisting of eight questions. There is a time limit of 90 minutes and the pass-rate is 70%.A number of exercises are interspersed throughout the course, which are aimed at testing your understanding and practical application of the training you have just received. At the end of the course, a number of mock-exam case study scenarios are provided which have been designed to simulate the actual exam.After passing both exams you will become a certified ArchiMate 3 Practitioner! [-]
Les mer
Virtuelt eller personlig 2 dager 8 300 kr
04 Nov
Kurset passer for dem som ønsker å kunne bruke AutoCAD på en mer avansert og effektiv måte. [+]
Kurset går i dybden på en del standard kommandoer og områder som plotting, målsetting, teksting og skravur. I tillegg gjennomgåes en del nye og avanserte kommandoer som Block og attributter, XREF og import og bruk av PDF filer.    AutoCAD 2D Videregående kurs: Tilpasse AutoCAD til eget brukermiljø Blokker med attributter og uttrekk til tabell/Excel Tabeller og Fields XREF - eksterne referanser Import og håndtering av PDF filer Innsetting av andre filformater som eks. DWF, raster filer og DGN Definering og bruk av annotative objekter ved målsetting og teksting. Avansert plotting Funksjoner i Express Tools   [-]
Les mer
Oslo Trondheim Og 1 annet sted 2 dager 20 900 kr
25 Aug
25 Aug
08 Sep
TOGAF® EA Training Foundation [+]
TOGAF® EA Training Foundation [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excel for Økonomer - elæringskurs [+]
Excel for Økonomer - elæringskurs [-]
Les mer
Nettkurs 2 timer 1 990 kr
Er du på jakt etter mer avansert funksjonalitet på forsidene dine? På dette webinaret lærer du mer om å sette inn innhold fra andre kilder og å sy sammen komponente... [+]
Er du på jakt etter mer avansert funksjonalitet på forsidene dine? På dette webinaret lærer du mer om å sette inn innhold fra andre kilder og å sy sammen komponentene på siden. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Sider og sideoppsett Bli kjent med Webdel-sider og oppsett Hvordan legge til skriptsnutter og elementer fra andre nettsider   Bygg inn innhold Legg inn embed-kode Forberede og presentere en PowerPoint-presentasjon på forsiden ved hjelp av Office Web Apps/Office Online   Forsider og dashboards Forberede og presentere en Excel-bok på forsiden med Excel Services Forberede og presentere en Visio-tegning som forsidemeny med Visio Services   Dynamiske sider Målgrupper Koble sammen webdeler og la innhold i en webdel påvirke innholdet i en annen   3 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Gratis support [-]
Les mer
Oslo 1 dag 9 900 kr
19 Sep
19 Sep
05 Dec
AWS Technical Essentials [+]
AWS Technical Essentials [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led class provides an overview of Google Cloud Platform products and services. Through a combination of presentations and hands-on labs, participa... [+]
Objectives This course teaches participants the following skills: Identify the purpose and value of each of the Google Cloud Platform products and services Interact with Google Cloud Platform services Describe ways in which customers have used Google Cloud Platform Choose among and use application deployment environments on Google Cloud Platform: Google App Engine, Google Kubernetes Engine, and Google Compute Engine Choose among and use Google Cloud Platform storage options: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore Make basic use of BigQuery, Google’s managed data warehouse for analytics Make basic use of Cloud Deployment Manager, Google’s tool for creating and managing cloud resources through templates Make basic use of Google Stackdriver, Google’s monitoring, logging, and diagnostics system All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud Platform -Explain the advantages of Google Cloud Platform-Define the components of Google's network infrastructure, including: Points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud Platform -Identify the purpose of projects on Google Cloud Platform-Understand the purpose of and use cases for Identity and Access Management-List the methods of interacting with Google Cloud Platform-Lab: Getting Started with Google Cloud Platform Module 3: Virtual Machines and Networks in the Cloud -Identify the purpose of and use cases for Google Compute Engine.-Understand the various Google Cloud Platform networking and operational tools and services.-Lab: Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore.-Learn how to choose between the various storage options on Google Cloud Platform.-Lab: Cloud Storage and Cloud SQL Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers.-Identify the purpose of and use cases for Google Kubernetes Engine and Kubernetes.-Lab: Kubernetes Engine Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine.-Contrast the App Engine Standard environment with the App Engine Flexible environment.-Understand the purpose of and use cases for Google Cloud Endpoints.-Lab: App Engine Module 7: Developing, Deploying, and Monitoring in the Cloud -Understand options for software developers to host their source code.-Understand the purpose of template-based creation and management of resources.-Understand the purpose of integrated monitoring, alerting, and debugging.-Lab: Deployment Manager and Stackdriver Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms.-Lab: BigQuery [-]
Les mer