IT-kurs
Kurs i programvare og applikasjoner
Du har valgt: København
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i København ) i Kurs i programvare og applikasjoner
 

Virtuelt klasserom 2 dager 8 900 kr
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan ... [+]
Kursinstruktør   Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer. Kursinstruktør   Jonny Austad Jonny Austad er utdannet som Adjunkt og har jobbet som lærer og instruktør siden 1989. Han har dessuten jobbet mye med support og drifting av nettverk og vet som oftest hva som er vanlige problemer ute i bedriftene. Han var den første Datakort-læreren i landet (høsten 1997), og har Office-pakken med spesielt Excel som sitt hjertebarn. Jonny er en meget hyggelig og utadvendt person som elsker å undervise med smarte løsninger på problemer samt vise smarte tips og triks i de ulike programmene. Kursinnhold Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Bruk av stiler gir profesjonelle og flotte dokumenter. Lær å lage innholdsfortegnelse, stikkordliste og figurliste automatisk. Profesjonelt sideoppsett med spalter, marger, sidefarger, sidekantlinjer og dokumenttemaer. Auto korrektur, byggeblokker, egenskaper og felt gjør det enklere å gjenbruke tekst. Flere deldokumenter kan samles i et hoved dokument ved hjelp av hoveddokumentvisning. I lange dokumenter kan du ha uliketopp- og bunntekster og selv bestemme side nummerering. For å friske opp et dokument kan du sette inn utklipp, figurer, SmartArt og diagram. Med tekstbokser kan du presentere sitater eller sammendrag fra dokumentet. Tabeller kan brukes til å presentere informasjon på en oversiktlig måte men kan også sorteres og inneholde beregninger. Maler brukes for å sikre at dokumenter av samme type får en ensartet formatering. Felt, innholdskontroller og skjemakontroller kan settes inn for å effektivisere bruken av maler. Med makroer kan du effektivisere avanserte oppgaver som består av serie med handlinger. Med fletting kan du masseprodusere brev, konvolutter, etiketter og e-post. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Word erfaring som de gjerne deler med deg! Meld deg på Word-kurs allerede i dag og sikre deg plass! Lær deg: behandling av stiler rask og enkel opprettelse av innholdsfortegnelse sette inn forsider samarbeid om felles dokument spalter beregninger i tabeller innsetting av diagram sett inn bilder og bildetekst grafikk og tegning maler og skjema bruk av makroer integrasjon med Excel og andre programmer [-]
Les mer
Sentrum 3 dager 12 300 kr
Trenger du å bygge opp store og avanserte regneark? Ønsker du å lage rapporter og beregninger på store tallgrunnlag? Vil du finne ut hvordan du kan effektivisere arbe... [+]
Trenger du å bygge opp store og avanserte regneark? Ønsker du å lage rapporter og beregninger på store tallgrunnlag? Vil du finne ut hvordan du kan effektivisere arbeidet ditt i Excel? Ønsker du å lære de første stegene mot automatiserte rapporter? Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Generelt om regneark Om regneark og infrastruktur Bruke tastatur og hurtigtaster effektiv Absolutte referanser og definerte navn   Funksjoner Mer om funksjoner, hvis, antall.hvis, summer.hvis.sett Lær om "må ha funksjonen" Finn.rad [Vlookup] Andre funksjoner for spesielle oppgaver   Avansert formatering Spesiell formatering – dato, tekst og egendefinert Betinget formatering og cellestiler   Dag 2    Lister og tabeller Viktige regler og råd Bruk av autofilter og sortering Tabellfunksjonalitet Validering ved inntasting Beregninger av store datamengder via gode funksjoner   Pivottabell Hva er pivottabell og hvordan lage raske og enkle rapporter Utvidede muligheter i Pivot som grupperinger, vis verdier som og slicer   Dag 3   Metoder for dataimport Direkte import fra database   Innføring til makro Spille inn /registrere makro Ord/uttrykk og VBA editor   Datavask Slette tommer rader, fylle tomme celler Bruk av funksjoner for å klargjøre datagrunnlag Identifisere og håndtere avvik i grunnlag   Alternative temaer (hvis tid) Tips til diagrammer Hva hvis analyse Konsolidering   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Oslo Bergen 3 dager 27 900 kr
24 Sep
24 Sep
26 Nov
Architecting on AWS [+]
Architecting on AWS [-]
Les mer
Virtuelt klasserom 5 dager 33 000 kr
The Implementing and Operating Cisco Enterprise Network Core Technologies course gives you the knowledge and skills needed to configure, troubleshoot, and manage enterpri... [+]
COURSE OVERVIEW  Learn how to implement security principles within an enterprise network and how to overlay network design by using solutions such as SD-Access and SD-WAN. The automation and programmability of Enterprise networks is also incorporated in this course. This course will help you: Configure, troubleshoot, and manage enterprise wired and wireless networks Implement security principles within an enterprise network Earn 64 CE credits toward recertification   Please note that this course is a combination of Instructor-Led and Self-Paced Study - 5 days in the classroom and approx. 3 days of self study. The self-study content will be provided as part of the digital courseware that you receive at the beginning of the course and should be part of your preparation for the exam. Additional lab access will be provided at the end of the class, this will be valid for 60 hours or 90 days whichever is the shorter. It will be possible to complete all but 7 of the labs after the class. TARGET AUDIENCE Network engineers involved in the installation, support and troubleshooting of enterprise networks. COURSE OBJECTIVES After completing this course you should be able to: Illustrate the hierarchical network design model and architecture using the access, distribution, and core layers Compare and contrast the various hardware and software switching mechanisms and operation, while defining the Ternary Content Addressable Memory (TCAM) and Content Addressable Memory (CAM), along with process switching, fast switching, and Cisco Express Forwarding concepts Troubleshoot Layer 2 connectivity using VLANs and trunking Implementation of redundant switched networks using Spanning Tree Protocol Troubleshooting link aggregation using EtherChannel Describe the features, metrics, and path selection concepts of Enhanced Interior Gateway Routing Protocol (EIGRP) Implementation and optimization of Open Shortest Path First (OSPF)v2 and OSPFv3, including adjacencies, packet types, and areas, summarization, and route filtering for IPv4 and IPv6 Implementing External Border Gateway Protocol (EBGP) interdomain routing, path selection, and single and dual-homed networking Implementing network redundancy using protocols including Hot Standby Routing Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP) Implementing internet connectivity within Enterprise using static and dynamic Network Address Translation (NAT) Describe the virtualization technology of servers, switches, and the various network devices and components Implementing overlay technologies such as Virtual Routing and Forwarding (VRF), Generic Routing Encapsulation (GRE), VPN, and Location Identifier Separation Protocol (LISP) Describe the components and concepts of wireless networking including Radio Frequency (RF) and antenna characteristics, and define the specific wireless standards Describe the various wireless deployment models available, include autonomous Access Point (AP) deployments and cloud-based designs within the centralized Cisco Wireless LAN Controller (WLC) architecture Describe wireless roaming and location services Describe how APs communicate with WLCs to obtain software, configurations, and centralized management Configure and verify Extensible Authentication Protocol (EAP), WebAuth, and Pre-shared Key (PSK) wireless client authentication on a WLC Troubleshoot wireless client connectivity issues using various available tools Troubleshooting Enterprise networks using services such as Network Time Protocol (NTP), Simple Network Management Protocol (SNMP), Cisco Internetwork Operating System (Cisco IOS®) IP Service Level Agreements (SLAs), NetFlow, and Cisco IOS Embedded Event Manager Explain the use of available network analysis and troubleshooting tools, which include show and debug commands, as well as best practices in troubleshooting Configure secure administrative access for Cisco IOS devices using the Command-Line Interface (CLI) access, Role-Based Access Control (RBAC), Access Control List (ACL), and Secure Shell (SSH), and explore device hardening concepts to secure devices from less secure applications, such as Telnet and HTTP Implement scalable administration using Authentication, Authorization, and Accounting (AAA) and the local database, while exploring the features and benefits Describe the enterprise network security architecture, including the purpose and function of VPNs, content security, logging, endpoint security, personal firewalls, and other security features Explain the purpose, function, features, and workflow of Cisco DNA Centre™ Assurance for Intent-Based Networking, for network visibility, proactive monitoring, and application experience Describe the components and features of the Cisco SD-Access solution, including the nodes, fabric control plane, and data plane, while illustrating the purpose and function of the Virtual Extensible LAN (VXLAN) gateways Define the components and features of Cisco SD-WAN solutions, including the orchestration plane, management plane, control plane, and data plane Describe the concepts, purpose, and features of multicast protocols, including Internet Group Management Protocol (IGMP) v2/v3, Protocol-Independent Multicast (PIM) dense mode/sparse mode, and rendezvous points Describe the concepts and features of Quality of Service (QoS), and describe the need within the enterprise network Explain basic Python components and conditionals with script writing and analysis Describe network programmability protocols such as Network Configuration Protocol (NETCONF) and RESTCONF Describe APIs in Cisco DNA Centre and vManage COURSE CONTENT Examining Cisco Enterprise Network Architecture Cisco Enterprise Architecture Model Campus LAN Design Fundamentals Traditional Multilayer Campus Layer Design Campus Distribution Layer Design   Understanding Cisco Switching Paths Layer 2 Switch Operation Control and Data Plane Cisco Switching Mechanisms Implementing Campus LAN Connectivity Revisiting VLANs Trunking with 802.1Q Inter-VLAN Routing Building Redundant Switched Topology Spanning-Tree Protocol Overview Spanning-Tree Protocol Operation Spanning-Tree Protocols Types and Features Multiple Spanning Tree Protocol PortFast and BPDU Implementing Layer 2 Port Aggregation (Self-Study) Need for EtherChannel EtherChannel Mode Interactions Layer 2 EtherChannel Configuration Guidelines EtherChannel Load-Balancing Options Troubleshoot EtherChannel Issues Understanding EIGRP EIGRP Features EIGRP Reliable Transport Establishing EIGRP Neighbour Adjacency EIGRP Metrics EIGRP Path Selection Explore EIGRP Path Selection Explore EIGRP Load Balancing and Sharing EIGRP for IPv6 Compare EIGRP and OSPF Routing Protocols Implementing OSPF Describe OSPF The OSPF Process OSPF Neighbour Adjacencies Building a Link-State Database OSPF LSA Types Compare Single-Area and Multi-Area OSPF OSPF Area Structure OSPF Network Types Optimizing OSPF OSPF Cost OSPF Route Summarization Benefits OSPF Route Filtering Tools Compare OSPFv2 and OSPFv3 Exploring EBGP Interdomain Routing with BGP BGP Operations Types of BGP Neighbour Relationships BGP Path Selection BGP Path Attributes Implementing Network Redundancy Need for Default Gateway Redundancy Define FHRP HSRP Advanced Features Cisco Switch High Availability Features Implementing NAT Define Network Address Translation NAT Address Types Explore NAT Implementations NAT Virtual Interface Introducing Virtualisation Protocols and Techniques Server Virtualisation Need for Network Virtualisation Path Isolation Overview Introducing VRF Introducing Generic Routing Encapsulation Introducing Virtualisation Protocols and Techniques Server Virualization Need for Network Virtualisation Path Isolation Overview Introducing VRF Introducing Generic Routing Encapsulation Understanding Virtual Private Networks and Interfaces Site-to-Site VPN Technologies IPSec VPN Overview IPSec: IKE IPsec Modes IPsec VPN Types Cisco IOS VTI Understanding Wireless Principles Explain RF Principles Describe Watts and Decibels Describe Antenna Characteristics Describe IEEE Wireless Standards Identify Wireless Component Roles Examining Wireless Deployment Options Wireless Deployment Overview Describe Autonomous AP Deployment Describe Centralized Cisco WLC Deployment Describe FlexConnect Deployment Cloud Deployment and Its Effect on Enterprise Networks Describe the Cloud-Managed Meraki Solution Cisco Catalyst 9800 Series Controller Deployment Options Describe Cisco Mobility Express Understanding Wireless Roaming and Location Services Wireless Roaming Overview Mobility Groups and Domains Wireless Roaming Types Describe Location Services Examining Wireless AP Operation Universal AP Priming Explore the Controller Discovery Process Describe AP Failover Explain High Availability Explore AP Modes Understanding Wireless Client Authentication Authentication Methods Pre-Shared Key (PSK) Authentication 802.1X User Authentication Overview PKI and 802.1X Certificate Based Authentication Introduction to Extensible Authentication Protocol EAP-Transport Layer Security (EAP-TLS) Protected Extensible Authentication Protocol EAP-FAST Guest Access with Web Auth Troubleshooting Wireless Client Connectivity Wireless Troubleshooting Tools Overview Spectrum Analysis Wi-Fi Scanning Packet Analysis Cisco AireOS GUI and CLI Tools Cisco Wireless Config Analyzer Express Common Wireless Client Connectivity Issues Overview Client to AP Connectivity WLAN Configuration Infrastructure Configuration Introducing Multicast Protocols (Self-study) Multicast Overview Internet Group Management Protocol Multicast Distribution Trees IP Multicasting Routing Rendezvous Point Introducing QoS (Self-study) Understand the Impact of User Applications on the Network Need for Quality of Service (QoS) Describe QoS Mechanisms Define and Interpret a QoS Policy Implementing Network Services Understanding Network Time Protocol Logging Services Simple Network Management Protocol Introducing NetFlow Flexible NetFlow Understanding Cisco IOS Embedded Event Manager Using Network Analysis Tools Troubleshooting Concepts Network Troubleshooting Procedures: Overview Network Troubleshooting Procedures: Case Study Basic Hardware Diagnostics Filtered Show Commands Cisco IOS IP SLAs Switched Port Analyzer(SPAN) Overview Remote SPAN (RSPAN) Encapsulated Remote Switched Port Analyzer(ERSAPN) Cisco Packet Capture Tools Overview Implementing Infrastructure Security ACL Overview ACL Wildcard Masking Types of ACLs Configure Numbered Access Lists Use ACLs to Filter Network Traffic Apply ACLs to Interfaces Configured Named Access Lists Control Plane Overview Control Plane Policing Implementing Secure Access Control Securing Device Access AAA Framework Overview Benefits of AAA Usage Authentication Options RADIUS and TACACS+ Enabling AAA and Configuring a Local User for Fallback Configuring RADIUS for Console and VTY Access Configuring TACACS+ for Console and VTY Access Configure Authorization and Accounting Understanding Enterprise Network Security Architecture (Self-study) Explore Threatscape Cisco Intrusion Prevention Systems Virtual Private Networks Content Security Logging Endpoint Security Personal Firewalls Antivirus and Antispyware Centralized Endpoint Policy Enforcement Cisco AMP for Endpoints Firewall Concepts TrustSec MACsec Identity Management 802.1X for Wired and Wireless Endpoint Authentication MAC Authentication Bypass Web Authentication Exploring Automation and Assurance Using Cisco DNA Centre (Self-study) Need for Digital Transformation Cisco Digital Network Architecture Cisco Intent-Based Networking Cisco DNA Centre Automation Overview Cisco DNA Centre Platform Overview Cisco DNA Centre Design Cisco DNA Centre Inventory Overview Cisco DNA Centre Configuration and Management Overview Onboarding of Network Devices Using Cisco DNA Centre Cisco DNA Centre Software Image Management Overview Cisco DNA Assurance Key Features and Use Cases Cisco DNA Centre Assurance Implementation Workflow Examining the Cisco SD-Access Solution (Self-study) Need for Cisco SD-Access Cisco SD Access Overview Cisco SD-Access Fabric Components Cisco SD-Access Fabric Control Plane Based on LISP Cisco SD-Access Fabric Control Plane Based on VXLAN Cisco SD-Access Fabric Control Plane Based on Cisco TrustSec Role of Cisco ISE and Cisco DNA Centre in SD-Access Cisco SD-Access Wireless Integration Traditional Campus Interoperating with Cisco SD-Access Understanding the Working Principles of the Cisco SD-WAN Solution (Self-study) Need for Software Defined Networking for WAN Cisco SD-WAN Components and Functions Cisco SD-WAN Orchestration Plane Cisco SD-WAN Management Plane- vManage Cisco SD-WAN Control Plane - vSmart Cisco SD-WAN Data Plane - WAN Edge Cisco SD-WAN Programmatic APIs Cisco SD-WAN Automation and Analytics Cisco SD-WAN Terminology Cisco IOS XE and IOS XE SD-WAN Software Flexible Controller Deployment Options Cisco SD-WAN Security Understanding the Basics of Python Programming Describe Python Concepts String Data Types Numbers Data Types Boolean Data Types Script Writing and Execution Analyse Code Introducing Network Programmability Protocols Configuration Management Evolution of Device Management and Programmability Data Encoding Formats Understanding JSON Model Driven Programmability Stack Introduction to YANG Types of YANG Models Understanding NETCONF Explain NETCONF and YANG REST Understanding RESTCONF Protocol Introducing APIs in Cisco DNA Centre and vManage (Self-study) Application Programming Interfaces REST API Response Codes and Results REST API Security Cisco DNA Centre APIs Cisco SD-WAN REST API Overview Labs Lab 1: Investigate the CAM Lab 2: Analyse Cisco Express Forwarding Lab 3: Troubleshoot VLAN and Trunk Issues Lab 4: Tuning STP and Configuring RSTP Lab 5: Configure Multiple Spanning Tree Protocol Lab 6: Troubleshoot EtherChannel Lab 7: Implementing Multiarea OSPF Lab 8: Implement OSPF Tuning Lab 9: Apply OSPF Optimization Lab 10: Implement OSPFv3 Lab 11: Configure and Verify Single-Homed EBGP Lab 12: Implementing HSRP Lab 13: Configure VRRP Lab 14: Implement NAT Lab 15: Configure and Verify VRF Lab 16: Configure and Verify a GRE Tunnel Lab 17: Configure Static VTI Point-to-Point Tunnels Lab 18: Configure Wireless Client Authentication in a Centralized Deployment (No Extended Access) Lab 19: Troubleshoot Wireless Client Connectivity Issues (No Extended Access) Lab 20: Configure Syslog Lab 21: Configure and Verify Flexible NetFlow Lab 22: Configuring Cisco IOS Embedded Event Manager (EEM) Lab 23: Troubleshoot Connectivity and Analyse Traffic with Ping, Traceroute and Debug Lab 24: Configure and Verify Cisco IP SLA's Lab 25: Configure Standard and Extended ACLs Lab 26: Configure Control Plane Policing Lab 27: Implement Local and Server-Based AAA (No Extended Access) Lab 28: Writing and Troubleshooting Python Scripts (No Extended Access) Lab 29: Explore JSON Objects and Scripts in Python (No Extended Access) Lab 30: Use NETCONF via SSH (No Extended Access) Lab 31: Use RESTCONF with Cisco IOS XE Software (No Extended Access) [-]
Les mer
Oslo 1 dag 9 500 kr
22 Aug
22 Aug
17 Oct
DP-900: Microsoft Azure Data Fundamentals [+]
DP-900: Microsoft Azure Data Fundamentals [-]
Les mer
Virtuelt klasserom 2 dager 6 900 kr
Har du behov for å håndtere og få oversikt over store informasjonsmengder med mange detaljer – så har du behov for et databaseverktøy! [+]
Kurs beskrivelse Er det vanskelig å skjønne hvordan Access fungerer? Har du databaser med bare 1 tabell og ikke flere som de skal ha? Får du ikke orden på dine data? Må du skrive data inn i tabellen istedenfor gjennom et skjema? Er det vanskelig å få data ut fra databasen din? Blir databasen din lite brukervennlig? Dette er vanlige problemstillinger mange sliter med og som blir borte etter endt kurs! Kurset passer for deg med liten erfaring og som ønsker å lære Access fra grunnen av. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. På kun 2 dager vil du mestre de vanligste arbeidsoppgavene i Access. Du lærer gode rutiner du trenger for å kunne arbeide raskt og effektivt. Du vil kunne lage og strukturere alt fra enkle til mer avanserte databaser og vil føle deg trygg på at det er du som kontrollerer Access og ikke omvendt! Du lærer også hvordan du skal få data ut fra databasen din gjennom spørringer og rapporter. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Access erfaring som de gjerne deler med deg! Meld deg på Access-kurs allerede i dag og sikre deg plass!   Kursinnhold Grunnleggende begreper Introduksjon til databasedesign/datamodellering Planlegging av en ny databaseOrganisering av data i en database Opprette en database   Tabeller Tabellens utformingsvisningTabellens data arkvisning Spørringer/Queries UtvalgsspørringerHandlingsspørringer/ActionqueriesLag tabell-spørringSlettespørring-Føy til-spørringOppdateringsspørringParameterspørringer Skjemaer Opprette skjemaer med skjemaveivisereSkjemavisningUformingsvisning for skjemaerGjennomgang av designverktøyVerktøyboksenFargepalett, fonter, tekstplasseringBundne, ubundne og kalkulerte kontrollerPostkilde og feltliste for et skjemaEn-til-mange-skjema Rapporter Opprette rapporter med RapportveiviserenUtformingsvisning for en rapportGruppering og sortering i rapporter Etiketter Spesialtilpassede etikettmalerEtikettveiviseren   [-]
Les mer
Virtuelt klasserom 3 dager 24 500 kr
In this course students will gain the knowledge and skills needed to implement security controls, maintain the security posture, and identify and remediate vulnerabilitie... [+]
Objectives Describe specialized data classifications on Azure Identify Azure data protection mechanisms Implement Azure data encryption methods Secure Internet protocols and how to implement them on Azure Describe Azure security services and features Agenda Module 1: Identity and Access -Configure Azure Active Directory for Azure workloads and subscriptions-Configure Azure AD Privileged Identity Management-Configure security for an Azure subscription Module 2: Platform Protection -Understand cloud security-Build a network-Secure network-Implement host security-Implement platform security-Implement subscription security Module 3: Security Operations -Configure security services-Configure security policies by using Azure Security Center-Manage security alerts-Respond to and remediate security issues-Create security baselines Module 4: Data and applications -Configure security policies to manage data-Configure security for data infrastructure-Configure encryption for data at rest-Understand application security-Implement security for application lifecycle-Secure applications-Configure and manage Azure Key Vault       [-]
Les mer
1 dag 9 900 kr
Confluence Essentials (server) [+]
Confluence Essentials (server) [-]
Les mer
Oslo 4 dager 22 500 kr
25 Aug
25 Aug
06 Oct
https://www.glasspaper.no/kurs/az-500/ [+]
AZ-500: Microsoft Azure Security Technologies [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
Oslo 3 dager 26 900 kr
17 Sep
17 Sep
03 Dec
Kubernetes for App Developers (LFD459) [+]
Kubernetes for App Developers (LFD459) [-]
Les mer
Oslo Bergen Og 1 annet sted 3 dager 23 500 kr
13 Aug
15 Oct
12 Nov
ISTQB Foundation v4.0 Certificate [+]
ISTQB Foundation v4.0 Certificate [-]
Les mer
Klasserom + nettkurs Sentrum 1 dag 5 490 kr
Excel controllere/økonomer kurs vinklet fra en Controllers hverdag med fokus på gode metoder for å arbeid med Excel-lister. Påfyllet kurset gir deg, gjør deg i stand... [+]
Excel controllere/økonomer kurs vinklet fra en Controllers hverdag med fokus på gode metoder for å arbeide med Excel-lister. Påfyllet kurset gir deg, gjør deg i stand til å jobbe mer effektivt i Excel. Kursets mange eksempler, viser hva du virkelig kan få til i Excel, enten det er å jobbe med formler / funksjoner, lister eller store Excel-modeller. Kurset er utviklet av controllere, med det for øye at du skal kunne angripe dine Excel-utfordringer på en smart og effektiv måte. Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:     Datautveksling/Klargjøring av data Mulige inndatametoder: Importering av tekstfil, webspørringer, innliming av data fra WWW. Importere data med ulikt dataformat: tekst - eller databaseformat Formatproblemer ifm. dataimport: ”feil” formater, fjerne deler av informasjon i en celle, fjerne duplikater, kjapt finne skrivefeil   Data/Konsolider Konsolider data: hvor data ligger i samme regneark Konsolidering data: hvor dataene skal behandles på tvers av regneark. Konsolidering data: hvor data ligger i ulike arbeidsbøker   Tabeller/Listefunksjonalitet Definisjonen av en tabell: Viktig å huske når tabellen skal behandles videre. Jobbe med en liste: få gode råd angående arbeid med lister Sortere tabellen: kjapt og enkelt med egendefinerte sorteringsnøkler Filter med Autofilter: filtrere ut bare de data du ønsker eller slette tomme rader. Filter med Avansert filter: få råd om i hvilke situasjoner det er smart å bruke avansert filter og hvordan du enklest bruker dette filteret. Beregninger i tabeller og lister Beregninger med flere variabler: Funksjonene Dsummer, Dantall og DGjennomsnitt Organiser og beregne data : Ved hjelp av delsammendrag. Lær hvordan resultatet kan kopieres til et annet sted. Oppslag i en liste: Funksjonene Finn.Kolonne og Finn.Rad Lag rapporter ved hjelp av Pivotteknikk: Opplev hvor enkelt det er å lage rapporter ved hjelp av pivotteknikk!   "Hva hvis"-analyser og optimalisering Sensitivitetsanalyse: Målsøking er en måte å regne ”baklengs” på. Sensitivitetsanalyse: Tabeller med 1 og 2 variabler Optimalisering: Ved hjelp av Problemløseren   Samarbeid med andre Deling av arbeidsbøker: ved ønske om å jobbe samtidig i samme arbeidsbok Sporing av endringer: når du ønsker å plukke opp de endringer andre har gjort     4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer