IT-kurs
Kurs i programvare og applikasjoner
Sør-Trøndelag
Du har valgt: Osen
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Osen ) i Kurs i programvare og applikasjoner
 

Virtuelt klasserom 4 dager 22 000 kr
This course provides IT Identity and Access Professional, along with IT Security Professional, with the knowledge and skills needed to implement identity management solut... [+]
. This course includes identity content for Azure AD, enterprise application registration, conditional access, identity governance, and other identity tools.   TARGET AUDIENCE This course is for the Identity and Access Administrators who are planning to take the associated certification exam, or who are performing identity and access administration tasks in their day-to-day job. This course would also be helpful to an administrator or engineer that wants to specialize in providing identity solutions and access management systems for Azure-based solutions; playing an integral role in protecting an organization. COURSE OBJECTIVES Implement an identity management solution Implement an authentication and access management solutions Implement access management for apps Plan and implement an identity governancy strategy COURSE CONTENT Module 1: Implement an identity management solution Learn to create and manage your initial Azure Active Directory (Azure AD) implementation and configure the users, groups, and external identities you will use to run your solution. Lessons M1 Implement Initial configuration of Azure AD Create, configure, and manage identities Implement and manage external identities Implement and manage hybrid identity Lab 1a: Manage user roles Lab 1b: Setting tenant-wide properties Lab 1c: Assign licenses to users Lab 1d: Restore or remove deleted users Lab 1e: Add groups in Azure AD Lab 1f: Change group license assignments Lab 1g: Change user license assignments Lab 1h: Configure external collaboration Lab 1i: Add guest users to the directory Lab 1j: Explore dynamic groups After completing module 1, students will be able to: Deploy an initail Azure AD with custom settings Manage both internal and external identities Implement a hybrid identity solution Module 2: Implement an authentication and access management solution Implement and administer your access management using Azure AD. Use MFA, conditional access, and identity protection to manager your identity solution. Lessons M2 Secure Azure AD user with MFA Manage user authentication Plan, implement, and administer conditional access Manage Azure AD identity protection Lab 2a: Enable Azure AD MFA Lab 2b: Configure and deploy self-service password reset (SSPR) Lab 2c: Work with security defaults Lab 2d: Implement conditional access policies, roles, and assignments Lab 2e: Configure authentication session controls Lab 2f: Manage Azure AD smart lockout values Lab 2g: Enable sign-in risk policy Lab 2h: Configure Azure AD MFA authentication registration policy After completing module 2, students will be able to: Configure and manage user authentication including MFA Control access to resources using conditional access Use Azure AD Identity Protection to protect your organization Module 3: Implement access management for Apps Explore how applications can and should be added to your identity and access solution with application registration in Azure AD. Lessons M3 Plan and design the integration of enterprise for SSO Implement and monitor the integration of enterprise apps for SSO Implement app registration Lab 3a: Implement access management for apps Lab 3b: Create a custom role to management app registration Lab 3c: Register an application Lab 3d: Grant tenant-wide admin consent to an application Lab 3e: Add app roles to applications and recieve tokens After completing module 3, students will be able to: Register a new application to your Azure AD Plan and implement SSO for enterprise application Monitor and maintain enterprise applications Module 4: Plan and implement an identity governancy strategy Design and implement identity governance for your identity solution using entitlement, access reviews, privileged access, and monitoring your Azure Active Directory (Azure AD). Lessons M4 Plan and implement entitlement management Plan, implement, and manage access reviews Plan and implement privileged access Monitor and maintain Azure AD Lab 4a: Creat and manage a resource catalog with Azure AD entitlement Lab 4b: Add terms of use acceptance report Lab 4c: Manage the lifecycle of external users with Azure AD identity governance Lab 4d: Create access reviews for groups and apps Lab 4e: Configure PIM for Azure AD roles Lab 4f: Assign Azure AD role in PIM Lab 4g: Assign Azure resource roles in PIM Lab 4h: Connect data from Azure AD to Azure Sentinel After completing module 4, students will be able to: Mange and maintain Azure AD from creation to solution Use access reviews to maintain your Azure AD Grant access to users with entitlement management [-]
Les mer
Excel for controllere [+]
Dette kurset er innrettet mot dem som jobber med økonomisk oppfølging i bedriften. Vi går inn på prosessene fra innhenting av data, bearbeidelse av dataene, sammendrag og analyse av dataene, og til sist rapportering av dataene til bedriftens beslutningstagere. Vi bruker en god del tid på Pivot og Power Pivot her, men vi går ikke fullt så langt som i spesialkurset om Pivottabeller. Kurset forutsetter at man er godt kjent i Excel, og vant til å jobbe med litt kompliserte problemstillinger i Excel. Kontroll/gjennomgang av en del sentral funksjonalitet – bl.a. absolutte, relative og blandede referanser. Sammendrag av data fra flere ark i samme eller flere arbeidsbøker, bl.a. gjennomgående summering og tabulering v.hj.a. INDIREKTE-funksjonen. Betingende sammendrag v.hj.a. matriseformler og funksjoner Sentrale funksjoner, bl.a. HVIS, HVISFEIL, FINN.RAD, FINN.KOLONNE, ANTALL.HVIS, etc. Sammendrag av data med Pivottabell Power Pivot Formler Rapportering av data Statiske rapporter Rapporter med interaktivitet, forskjellige teknikker Visualisering av tallene Dashboard Aktuelle teknikker for å lage dashboards Avstemming av to eller flere lister mot hverandre, f.ex. bank Lister – verktøy i Excel som er aktuelle når vi jobber med lister Makroer/VBA – introduksjon til automatisering [-]
Les mer
4 dager 23 000 kr
This course teaches Azure administrators how to plan, deliver, and manage virtual desktop experiences and remote apps, for any device, on Azure. [+]
 Students will learn through a mix of demonstrations and hands-on lab experiences deploying virtual desktop experiences and apps on Windows Virtual Desktop and optimizing them to run in multi-session virtual environments.Students for AZ-140: Configuring and Operating Windows Virtual Desktop on Microsoft Azure are interested in delivering applications on Windows Virtual Desktop and optimizing them to run in multi-session virtual environments. As a Windows Virtual Desktop administrator, you will closely with the Azure Administrators and Architects, along with Microsoft 365 Administrators. Windows Virtual Desktop administrator responsibilities include planning, deploying, packaging, updating, and maintaining the Azure Windows Virtual Desktop infrastructure. They also create session host images, implement and manage FSLogix, monitor Windows Virtual Desktop performance, and automate Windows Virtual Desktop management tasks. COURSE OBJECTIVES   Select an appropriate licensing model for Windows Virtual Desktop Implement networking for Windows Virtual Desktop Manage Windows Virtual Desktop session hosts by using Azure Bastion Configure storage for FSLogix components Create and manage session host images Implement Azure roles and role-based access control (RBAC) for Windows Virtual Desktop Configure user Windows Virtual Desktop experience settings Install and configure apps on a session host Implement business continuity and disaster recovery Monitor and manage Windows Virtual Desktop performance     COURSE CONTENT Module 1: Plan a Windows Virtual Desktop Architecture In this module, you will learn how to assess existing physical and virtual desktop environments, plan and configure name resolution for Active Directory (AD) and Azure Active Directory Domain Services (Azure AD DS), and plan for Windows Virtual Desktop client deployments. LESSONS M1 Windows Virtual Desktop Architecture Design the WVD architecture Design for user identities and profiles LAB: PREPARE FOR DEPLOYMENT OF AZURE WINDOWS VIRTUAL DESKTOP (AZURE AD DS) LAB: PREPARE FOR DEPLOYMENT OF AZURE WINDOWS VIRTUAL DESKTOP (AD DS) After completing module 1, students will be able to: Understand Windows Virtual Desktop Components Understand personal and pooled desktops Recommend an operating system for a WVD implementation Plan a host pools architecture Module 2: Implement a WVD Infrastructure In this module, you will learn how to manage connectivity to the internet and on-premises networks, create a host pool by using the Azure portal, deploy host pools and hosts by using Azure Resource Manager templates, apply OS and application updates to a running WVD host, and create a master image. LESSONS M2 Implement and manage networking for WVD Implement and manage storage for WVD Create and configure host pools and session hosts Create and manage session host image LAB: CREATE AND CONFIGURE HOST POOLS AND SESSION HOSTS (AZURE AD DS) LAB: DEPLOY HOST POOLS AND SESSION HOSTS BY USING THE AZURE PORTAL (AD DS) LAB: IMPLEMENT AND MANAGE STORAGE FOR WVD (AZURE AD DS) LAB: DEPLOY HOST POOLS AND HOSTS BY USING AZURE RESOURCE MANAGER TEMPLATES LAB: DEPLOY AND MANAGE HOST POOLS AND HOSTS BY USING POWERSHELL After completing module 2, students will be able to: Implement Azure virtual network connectivity Manage connectivity to the internet and on-premises networks Understanding Windows Virtual Desktop network connectivity Configure WVD session hosts using Azure Bastion Configure storage for FSLogix components Configure disks and file shares Modify a session host image Create and use a Shared Image Gallery (SIG) Module 3: Manage Access and Security In this module, you will learn how to plan and implement Azure roles and RBAC for WVD, implement Conditional Access policies for connections, plan and implement MFA, and manage security by using Azure Security Center. LESSONS M3 Manage access Manage security LAB: CONFIGURE CONDITIONAL ACCESS POLICIES FOR CONNECTIONS TO WVD (AD DS) After completing module 3, students will be able to: Manage local roles, groups and rights assignment on WVD session hosts. Configure user restrictions by using AD group policies and Azure AD policies Understand Conditional Access policy components Prepare for Azure Active Directory (Azure AD)-based Conditional Access for Windows Virtual Desktop Implement Azure AD-based Conditional Access for Windows Virtual Desktop Module 4: Manage User Environments and Apps In this module, you will learn how to plan for FSLogix, install FSLogix, configure Cloud Cache, deploy an application as a RemoteApp, and implement and manage OneDrive for Business for a multi-session environment. LESSONS M4 Implement and manage FSLogix Configure user experience settings Install and configure apps on a session host LAB: WINDOWS VIRTUAL DESKTOP PROFILE MANAGEMENT (AZURE AD DS) LAB: WINDOWS VIRTUAL DESKTOP PROFILE MANAGEMENT (AD DS) LAB: WINDOWS VIRTUAL DESKTOP APPLICATION PACKAGING (AD DS) After completing module 4, students will be able to: Configure Profile Containers Configure Azure Files to store profile containers for WVD in an AAD DS environment Implement FSLogix based profiles for Windows Virtual Desktop in Azure AD DS environment Implement FSLogix based profiles for Windows Virtual Desktop Prepare for and create MSIX app packages Implement MSIX app attach container for Windows Virtual Desktop in AD DS environmen Module 5: Monitor and maintain a WVD infrastructure In this module, you will learn how to plan and implement a disaster recovery plan for WVD, configure automation for WVD, implement autoscaling in host pools, and optimize session host capacity and performance. LESSONS M5 Plan and implement business continuity and disaster recovery Automate WVD management tasks Monitor and manage performance and health LAB: IMPLEMENT AUTOSCALING IN HOST POOLS (AD DS) After completing module 5, students will be able to: Plan and implement a disaster recovery plan for WVD Configure automation for WVD Monitor WVD by using Azure Monitor Customize Azure Workbooks for WVD monitoring Configure autoscaling of Windows Virtual Desktop session hosts Verify autoscaling of Windows Virtual Desktop session host [-]
Les mer
Nettkurs 1 time 549 kr
En pivottabell er et kraftig verktøy i Microsoft Excel som gjør at du kan beregne, summere og analysere store mengder data på en rask og effektiv måte. En pivottabell kan... [+]
En pivottabell er et kraftig verktøy i Microsoft Excel som gjør at du kan beregne, summere og analysere store mengder data på en rask og effektiv måte. En pivottabell kan brukes til å analysere numeriske data og til å besvare uventede spørsmål om dataen. Kort fortalt, en pivottabell hjelper deg med å ta informerte beslutninger basert på funnene i dataene dine. I dette kurset, ledet av Espen Faugstad, vil du lære alt du trenger å vite for å jobbe med pivottabeller i Microsoft Excel. Kurset vil dekke hva en pivottabell er, hvordan du klargjør data, organiserer data, formaterer data, presenterer data, og mye mer. For å ta dette kurset, bør du ha grunnleggende forståelse av Microsoft Excel. Kurset er strukturert i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Grunnleggende Kapittel 3: Viderekommen Kapittel 4: Avslutning Etter å ha fullført kurset vil du være i stand til å bruke pivottabeller til å analysere data, trekke innsikter og ta informerte beslutninger basert på dataene i Excel.   Varighet: 1 time   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettkurs 2 timer 549 kr
Vil du lære å utnytte mer av Microsoft Teams? Da anbefaler vi vårt nye nettkurs med videoundervisning, utviklet av ekspertinstruktør Espen Faugstad. Kurset er skreddersyd... [+]
Oppdag kraften i effektivt samarbeid med Microsoft Teams gjennom dette omfattende nettkurset ledet av Espen Faugstad. Kurset er skreddersydd for å gi deg en grundig forståelse av Teams' funksjoner, slik at du kan styrke kommunikasjon og samarbeid i organisasjonen din. Lær å navigere i Teams, administrere teams og kanaler, chatte effektivt, holde møter, og dele filer, samt integrere med andre Microsoft 365-applikasjoner og tredjepartsverktøy. Dette kurset er ideelt for alle roller – fra de som er ansvarlige for administrasjonen av Microsoft Teams, til teamledere som ønsker å forbedre samarbeidet, og ansatte som ønsker å jobbe mer effektivt. Meld deg på i dag for å bli en ekspert i Microsoft Teams og ta skrittet mot en mer effektiv og produktiv arbeidshverdag med veiledning fra Espen Faugstad.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Kom i gang Kapittel 3: Teams og kanaler Kapittel 4: Kommunikasjon Kapittel 5: Møter og videosamtaler Kapittel 6: Filhåndtering og samarbeid Kapittel 7: Ekstra funksjonalitet Kapittel 8: Avslutning   Varighet: 1 time og 47 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
2 dager 12 900 kr
Ønsker du å jobbe med ulike tegninger i Visio, men føler du ikke mestrer programmet? Vil du i tillegg kunne lage egne maler for å jobbe mer effektivt? Da er ”Visio ... [+]
Ønsker du å jobbe med ulike tegninger i Visio, men føler du ikke mestrer programmet? Vil du i tillegg kunne lage egne maler for å jobbe mer effektivt? Da er ”Visio Grunnleggende” kurset for deg! Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Hva er Visio? Få oversikt. Bli kjent med programvinduet og hvordan du kan tilpasse det etter dine behov. Mal. Hvordan er en mal bygd opp og hvordan jobbe med en tegning? Formatering. Lær å formatere og hva formateringsbegrepet betyr. Sjablonger og figurer. Hva er sjablonger og figurer?   Å jobbe effektivt med Visio Bygge opp en tegning. Lær å bygge opp en tegning fra bunnen av. Hurtigtaster. Effektiv bruk av tastatur og mus. Formatering. Bruk formatering for å gjøre tegningene oversiktlige og informasjonen mest mulig tilgjengelig. Ark. Lær å jobbe med flere ark, navngi dem, slette dem, bruke bakgrunner etc. Praktisk oppgaveløsing. Jobb med skreddersydde oppgaver innenfor dagens temaer. Andre Office-programmer. Lær å bruke Visio-tegninger i andre Office-programmer.   Flytskjema og organisasjonskart Koblinger. Lær å koble figurer på en effektiv måte. Oppsett. Hvordan sørge for at figurene står plassert på en nøyaktig og oversiktlig måte? Navigasjon. Bygge opp praktisk navigasjon mellom sidene i en større tegning.   Dag 2    Nettverksdiagram Figurdata. Knytt praktisk informasjon til figurene i tegningen. Rapporter. Hvordan hente ut rapporter fra en tegning?   Prosjektplaner Tidslinje. Illustrere faser i et prosjekt på en oversiktlig måte. Gantt-diagram. Vise prosjektinformasjon på en mer detaljert måte. Utskrift. Få oversikt over de vanligste problemstillingene ved utskrift.   Egne maler Maler. Hva er maler, deres styrke og hvordan kan jeg utnytte dem best mulig i mitt arbeid? Sjablonger. Bygge opp en egen samling med de figurene du skal bruke. Figurer. Lær å lage egne tilpassede figurer. Praktisk oppgaveløsing. Jobb med skreddersydde oppgaver innenfor dagens temaer.   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Nettkurs 2 timer 1 990 kr
Filer i SharePoint lagres i bibliotek. Her tar vi en grundig gjennomgang av bibliotek og tilpasningsmuligheter for disse, som versjonering, maler og Office-integrasjon. [+]
Filer i SharePoint lagres i bibliotek. Her tar vi en grundig gjennomgang av bibliotek og tilpasningsmuligheter for disse, som versjonering, maler og Office-integrasjon. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Om bibliotek Møt biblioteksmalene i SharePoint Opplasting, nedlasting Office-programmene og bibliotek Områdepapirkurv   Tilpasse bibliotek Endre Office-mal for et bibliotek Tilpass kolonner og metadata   Tips til bibliotek Bruke kolonner i Word Bibliotek i Windows Utforsker   Utvidet om bibliotek Gjennomgang av versjonering Bli kjent med godkjenning Arkivering og Send til   Veien videre Introduksjon til innholdstyper Introduksjon til dokumentsenter og innholds-sortering 3 gode grunner til å delta 1. Møt SharePoint sine bibliotek-apper og lær måter å åpne og lagre i bibliotek og håndtere innholdet 2. Forstå mer om versjonering, godkjenning og arkivering 3. Bli kjent med dokumentsenter og innholds-sortering   [-]
Les mer
Oslo 5 dager 46 000 kr
13 Oct
13 Oct
SFWIPA: Securing Data Center Networks and VPNs with Cisco Firewall Threat Defense [+]
SFWIPA: Securing Data Center Networks and VPNs with Cisco Secure Firewall Threat Defense [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. [+]
Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform. Learning Objectives This course teaches participants the following skills: Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform Use Cloud SQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform Employ BigQuery and Cloud Datalab to carry out interactive data analysis Train and use a neural network using TensorFlow Employ ML APIs Choose between different data processing products on the Google Cloud Platform Course Outline Module 1: Introducing Google Cloud Platform -Google Platform Fundamentals Overview-Google Cloud Platform Big Data Products Module 2: Compute and Storage Fundamentals -CPUs on demand (Compute Engine)-A global filesystem (Cloud Storage)-CloudShell-Lab: Set up an Ingest-Transform-Publish data processing pipeline Module 3: Data Analytics on the Cloud -Stepping-stones to the cloud-CloudSQL: your SQL database on the cloud-Lab: Importing data into CloudSQL and running queries-Spark on Dataproc-Lab: Machine Learning Recommendations with Spark on Dataproc Module 4: Scaling Data Analysis -Fast random access-Datalab-BigQuery-Lab: Build machine learning dataset Module 5: Machine Learning -Machine Learning with TensorFlow-Lab: Carry out ML with TensorFlow-Pre-built models for common needs-Lab: Employ ML APIs Module 6: Data Processing Architectures -Message-oriented architectures with Pub/Sub-Creating pipelines with Dataflow-Reference architecture for real-time and batch data processing Module 7: Summary -Why GCP?-Where to go from here-Additional Resources [-]
Les mer
Nettkurs 2 timer 1 990 kr
Er du på jakt etter mer avansert funksjonalitet på forsidene dine? På dette webinaret lærer du mer om å sette inn innhold fra andre kilder og å sy sammen komponente... [+]
Er du på jakt etter mer avansert funksjonalitet på forsidene dine? På dette webinaret lærer du mer om å sette inn innhold fra andre kilder og å sy sammen komponentene på siden. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Sider og sideoppsett Bli kjent med Webdel-sider og oppsett Hvordan legge til skriptsnutter og elementer fra andre nettsider   Bygg inn innhold Legg inn embed-kode Forberede og presentere en PowerPoint-presentasjon på forsiden ved hjelp av Office Web Apps/Office Online   Forsider og dashboards Forberede og presentere en Excel-bok på forsiden med Excel Services Forberede og presentere en Visio-tegning som forsidemeny med Visio Services   Dynamiske sider Målgrupper Koble sammen webdeler og la innhold i en webdel påvirke innholdet i en annen   3 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Gratis support [-]
Les mer
Oslo 5 dager 46 000 kr
08 Sep
10 Nov
10 Nov
https://www.glasspaper.no/kurs/sise-implementing-and-configuring-cisco-identity-services-engine/ [+]
SISE: Implementing and Configuring Cisco Identity Services Engine [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 27 500 kr
15 Sep
15 Sep
27 Oct
AZ-400: Designing and Implementing Microsoft DevOps solutions [+]
AZ-400: Designing and Implementing Microsoft DevOps solutions [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer