IT-kurs
Kurs i programvare og applikasjoner
Sør-Trøndelag
Du har valgt: Osen
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Osen ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
The Implementing Cisco Application Centric Infrastructure course show you how to deploy and manage the Cisco® Nexus® 9000 Series Switches in Cisco Application Centric Inf... [+]
COURSE OVERVIEW ou will learn how to configure and manage Cisco Nexus 9000 Series Switches in ACI mode, how to connect the Cisco ACI fabric to external networks and services, and fundamentals of Virtual Machine Manager (VMM) integration. You will gain hands-on practice implementing key capabilities such as fabric discovery, policies, connectivity, VMM integration, and more. This course is based on ACI Software v5.2 release.   This course helps you prepare to take the exam, Implementing Cisco Application Centric Infrastructure(300-620 DCACI), which leads to CCNP® Data Center and Cisco Certified Specialist – Data Center ACI Implementation certifications. TARGET AUDIENCE Individuals who need to understand how to configure and manage a data center network environment with the Cisco Nexus 9000 Switch operating in ACI Mode.   COURSE OBJECTIVES After completing this course, you should be able to: Describe Cisco ACI Fabric Infrastructure and basic Cisco ACI concepts Describe Cisco ACI policy model logical constructs Describe Cisco ACI basic packet forwarding Describe external network connectivity Describe VMM Integration Describe Layer 4 to Layer 7 integrations Explain Cisco ACI management features COURSE CONTENT Introducing Cisco ACI Fabric Infrastructure and Basic Concepts What Is Cisco ACI? Cisco ACI Topology and Hardware Cisco ACI Object Model Faults, Event Record, and Audit Log Cisco ACI Fabric Discovery Cisco ACI Access Policies Describing Cisco ACI Policy Model Logical Constructs Cisco ACI Logical Constructs Tenant Virtual Routing and Forwarding Bridge Domain Endpoint Group Application Profile Tenant Components Review Adding Bare-Metal Servers to Endpoint Groups Contracts Describing Cisco ACI Basic Packet Forwarding Endpoint Learning Basic Bridge Domain Configuration **** Introducing External Network Connectivity Cisco ACI External Connectivity Options External Layer 2 Network Connectivity External Layer 3 Network Connectivity Introducing VMM Integration VMware vCenter VDS Integration Resolution Immediacy in VMM Alternative VMM Integrations Describing Layer 4 to Layer 7 Integrations Service Appliance Insertion Without ACI L4-L7 Service Graph Service Appliance Insertion via ACI L4-L7 Service Graph Service Graph Configuration Workflow Service Graph PBR Introduction Explaining Cisco ACI Management Out-of-Band Management In-Band Management Syslog Simple Network Management Protocol Configuration Backup Authentication, Authorization, and Accounting Role-Based Access Control Cisco ACI Upgrade Collect Tech Support Labs Validate Fabric Discovery Configure Network Time Protocol (NTP) Create Access Policies and Virtual Port Channel (vPC) Enable Layer 2 Connectivity in the Same Endpoint Group (EPG) Enable Inter-EPG Layer 2 Connectivity Enable Inter-EPG Layer 3 Connectivity Compare Traffic Forwarding Methods in a Bridge Domain Configure External Layer 2 (L2Out) Connection Configure External Layer 3 (L3Out) Connection Integrate Application Policy Infrastructure Controller (APIC) With VMware vCenter Using VMware Distributed Virtual Switch (DVS) TEST CERTIFICATION Recommended as preparation for the following exams: 300-620 DCACI - Implementing Cisco Application Centric Infrastructure [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excelfunksjoner - elæringskurs [+]
Excelfunksjoner - elæringskurs [-]
Les mer
Arne Rettedals Hus 1 dag 3 900 kr
22 Oct
Kurset er for deg som allerede kan bruke Microsoft Word, men som vil jobbe mer hensiktsmessig med tekstbehandling. [+]
Kurset er for deg som allerede kan bruke Microsoft Word, men som vil jobbe mer hensiktsmessig med tekstbehandling. På kurset vil vi vise deg hvordan du kan jobbe smart og effektivt når du lager dokumenter, slik at du sparer tid i din arbeidshverdag og samtidig ender opp med mer elegante og flotte dokumenter og rapporter. Mål for kursetEtter endt kurs skal du kunne bruke verktøyet på en smart og effektiv måte. ForkunnskaperNoe kjennskap til Word. MålgruppeDette kurset er for deg som vet litt om Word og som ønsker å lære effektiv bruk av verktøyet. UndervisningsformKlasseromsundervisning med maks 12 deltakere. Deltakere må ha med egen datamaskin med relevant programvare. Pris Klasseromsundervisning 6 timer: 3900 kroner inkludert lunsj.  Ansatte ved UiS har egne betalingsbetingelser.   Varighet1 dag fra 09:00 til 15:00 Emner Merketeknikker Navigering og snarveier Disposisjonsvisning Tekst eller tegnformatering Avsnittsformatering Side og inndelingsformatering Stiler – bruke, endre og definere Temaer Innholdsfortegnelse Kryssreferanser, noter Bilde SmartArt Forside Diagram – integrasjon med Excel Hurtigdeler Språkverktøy Topp og bunntekster i inndelinger Åpne et eldre dokument i Word Oppdatere/oppgradere et dokument Hva er .docx? Fletting i Word til word, epost, printer Sette utskriftsopsjoner Skrive ut utvalg og inndelinger [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Oslo 3 dager 22 000 kr
01 Sep
01 Sep
17 Nov
ArchiMate® 3 Training Course Combined Foundation and Practitioner [+]
ArchiMate® 3 Training Course Combined Foundation and Practitioner [-]
Les mer
Nettkurs 2 timer 549 kr
Ta vårt videokurs i Excel fra din datamaskin. Lær så mye du vil, når du vil. Du får gratis hjelp. Du får kursbevis. Du får tilgang til alle kurs. Meld deg på her! [+]
Dette kurset er skreddersydd for deltakere som allerede har fullført vårt grunnleggende Excel-kurs og nå ønsker å ta sine ferdigheter til et avansert nivå. Kursinstruktør Espen Faugstad vil veilede deg gjennom en rekke avanserte emner, inkludert opprettelse av pivottabeller, bruk av funksjoner og formler, og mye mer. Kurset dekker grundig bruken av en rekke funksjoner og formler, inkludert SUMMER, MIN, MAKS, AVKORT, AVRUND, ANTALL, ANTALLA, KJEDE.SAMMEN, TRIMME, VENSTRE, HØYRE, DELTEKST, FINN.RAD, HVIS, SUMMERHVIS, ANTALL.HVIS og GJENNOMSNITTHVIS. I tillegg vil kurset veilede deg gjennom henting av ekstern data, sortering og filtrering, fjerning av duplikater, og gruppering av data.   Innhold: Kapittel 1: Pivottabeller Kapittel 2: Formler og Funksjoner Kapittel 3: Formelrevisjon Kapittel 4: Ekstern Data Kapittel 5: Sortering og Filtrering Kapittel 6: Dataverktøy Kapittel 7: Gruppering av Data Kapittel 8: Arkbeskyttelse Kapittel 9: Avslutning   Varighet: 2 timer og 17 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo Bergen 2 dager 12 500 kr
08 Sep
08 Sep
23 Sep
Power BI Desktop [+]
Power BI Desktop [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
Virtuelt klasserom 2 dager 14 000 kr
In this course, the students will design various data platform technologies into solutions that are in line with business and technical requirements. This can include on-... [+]
The students will also explore how to design data security including data access, data policies and standards. They will also design Azure data solutions which includes the optimization, availability and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Data Platform Architecture Considerations. -Core Principles of Creating Architectures-Design with Security in Mind-Performance and Scalability-Design for availability and recoverability-Design for efficiency and operations-Case Study Module 2: Azure Batch Processing Reference Architectures. -Lambda architectures from a Batch Mode Perspective-Design an Enterprise BI solution in Azure-Automate enterprise BI solutions in Azure-Architect an Enterprise-grade Conversational Bot in Azure Module 3: Azure Real-Time Reference Architectures. -Lambda architectures for a Real-Time Perspective-Lambda architectures for a Real-Time Perspective-Design a stream processing pipeline with Azure Databricks-Create an Azure IoT reference architecture Module 4: Data Platform Security Design Considerations. -Defense in Depth Security Approach-Network Level Protection-Identity Protection-Encryption Usage-Advanced Threat Protection Module 5: Designing for Resiliency and Scale. -Design Backup and Restore strategies-Optimize Network Performance-Design for Optimized Storage and Database Performance-Design for Optimized Storage and Database Performance-Incorporate Disaster Recovery into Architectures-Design Backup and Restore strategies Module 6: Design for Efficiency and Operations. -Maximizing the Efficiency of your Cloud Environment-Use Monitoring and Analytics to Gain Operational Insights-Use Automation to Reduce Effort and Error [-]
Les mer
Nettstudie 6 måneder 8 000 kr
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). [+]
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). Du får et grunnlag for videre studier, og kompetanse som gjør tegnearbeidet både utfordrende og interessant. Du lærer å bli fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger.   Studentlisens for AutoCAD og Revit Structure/Architecture er inkludert. Kurset er på norsk, men AutoCAD-programmet er på engelsk. Programvaren er gratis. Du lærer å bruke de grunnleggende kommandoene slik at du kan utføre enklere tegnearbeid. Du blir fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger. Du lærer å jobbe rasjonelt og å velge enkle løsninger. Bruk av flere lag med ulike farger gir god visualisering og bedre lesing av tegningene. Målsetting og teksting er viktig, og må utføres tydelig og på en riktig måte. Flater fylles med skravur og elementer kan lagres separat for senere bruk i andre tegninger. Kurset gir deg inngående informasjon gjennom studieveiledningen om hvordan du skal bruke de enkelte kommandoene. Det stilles krav til 100 % nøyaktighet, noe du oppnår når du jobber riktig. Du får øvelser med tegneoppgaver innen bygg, elektro, elkraft og maskin.   [-]
Les mer
Klasserom + nettkurs 2 semester 45 000 kr
Mange arbeidsgivere etterspør kunnskap om digital markedsføring. Lær deg å lage godt, engasjerende digitalt innhold brukerne dine vil ha. [+]
Etter kurset Digital markedsføring, skal du ha grunnleggende kunnskaper innen dataanalyse og kjenne til digitale mediers rolle innen markedsføring. Du skal beherske digital markedsføring, strategi og planlegging, samt jus og etikk innenfor samme tema. Du skal bli i stand til å analysere effekten av strategi og kampanjer. Du skal vite hvordan nettsidene optimaliseres, samt hvordan man etablerer og drifter digitale annonser. Du skal kunne lede digitale kampanjer og ha kunnskap om hvilken betydning en god digital strategi har innen digital markedsføring. Studiet er både praktisk og teoretisk rettet – med hovedvekt på å løse praktiske obligatoriske oppgaveløsning basert på teoretisk kunnskap. Studentene vil gjennom studieåret gjennomføre en rekke individuelle og gruppebaserte praktiske og teoretiske oppgaver knyttet til de forskjellige undertema. [-]
Les mer
Oslo Bergen 3 dager 20 000 kr
25 Aug
25 Aug
06 Oct
https://www.glasspaper.no/kurs/pl-300-microsoft-power-bi-data-analyst/ [+]
PL-300: Microsoft Power BI Data Analyst [-]
Les mer
Virtuelt eller personlig 2 dager 8 300 kr
04 Nov
Kurset passer for dem som ønsker å kunne bruke AutoCAD på en mer avansert og effektiv måte. [+]
Kurset går i dybden på en del standard kommandoer og områder som plotting, målsetting, teksting og skravur. I tillegg gjennomgåes en del nye og avanserte kommandoer som Block og attributter, XREF og import og bruk av PDF filer.    AutoCAD 2D Videregående kurs: Tilpasse AutoCAD til eget brukermiljø Blokker med attributter og uttrekk til tabell/Excel Tabeller og Fields XREF - eksterne referanser Import og håndtering av PDF filer Innsetting av andre filformater som eks. DWF, raster filer og DGN Definering og bruk av annotative objekter ved målsetting og teksting. Avansert plotting Funksjoner i Express Tools   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Hva er SharePoint. Roller. Tilgang til SharePoint. Opprette og bruke Team Sites. Navigering. Lister og Libraries. Home page. Opprette og bruke webpart. Opprette og bruke ... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Du må ha god kjennskap til Windows 2008 server og oppsett av AD og DNS og installasjon av SQL 2008 server. For deg som ikke har kjennskap til Windows 2008 server og/eller som heller vil bruke mer tid på SharePoint kan vi tilby en variant der du får ferdig oppsatte servere og SharePoint installert. Innleveringer: 8 obligatoriske øvinger. Personlig veileder: ja Vurderingsform: 2 dagers praktisk hjemmeeksamen med både teoretiske og praktiske oppgaver. Ansvarlig: Stein Meisingseth Eksamensdato: 19.12.13 / 15.05.14         Læremål: KUNNSKAPER:Kandidaten må:- kjenne til bruken av SharePoint i forskjellige situasjoner i en bedrift/organisasjon- kunne gjøre rede for hvordan SharePoint brukes i samskriving- kunne beskrive hvordan ulike roller i en organisasjon kan bruke SharePoint- ha kjennskap til hva det vil si å ha ansvaret for bruken av SharePoint i en bedrift/organisasjon FERDIGHETER:Kandidaten må:- kunne opprette webområder for deling av informasjon med andre- kunne sette opp administrasjon av dokumenter- kunne sette opp publisering av rapporter- kunne sette opp sidestruktur og brukerrettigheter, sideoppsett og tillatelser- kunne opprette infrastruktur for webområder- kunne sette opp muligheter for søking- kunne konfigurere systemet for bruk fra Internett- kunne konfigurerer Office Web Apps- kunne sette opp muligheter for å benytte arbeidsflyt GENERELL KOMPETANSE:Kandidaten:- har kompetanse til selvstendig både å formidle og å ta i bruk sine kunnskaper og ferdigheter i en bedrift som vil bruke SharePoint- kan i et praktisk prosjekt forklare og gjøre bruk av sin kunnskap for bruk av SharePoint Innhold:Hva er SharePoint. Roller. Tilgang til SharePoint. Opprette og bruke Team Sites. Navigering. Lister og Libraries. Home page. Opprette og bruke webpart. Opprette og bruke SharePoint Sites and Site Collections. Opprette og bruke maler. Sikkerhet i SharePoint. Opprette og bruke Wiki. Dokumentdeling. Søking.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag SharePoint 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer