IT-kurs
Kurs i programvare og applikasjoner
Møre og Romsdal
Du har valgt: Sande i Møre og Romsdal
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Sande i Møre og Romsdal ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Oslo Trondheim 2 dager 16 900 kr
22 Sep
22 Sep
20 Oct
Kubernetes [+]
Kubernetes [-]
Les mer
2 dager 11 900 kr
Power Pivot - Microsoft Excel [+]
Power Pivot - Microsoft Excel [-]
Les mer
1 dag 9 900 kr
Jira Project Administration (Cloud) [+]
Jira Project Administration (Cloud) [-]
Les mer
Oslo 2 dager 11 900 kr
24 Sep
24 Sep
Pivottabeller og rapportering i Excel [+]
Pivottabeller og rapportering i Excel [-]
Les mer
1 dag 12 500 kr
Google Cloud Fundamentals: Core Infrastructure [+]
Google Cloud Fundamentals: Core Infrastructure [-]
Les mer
Oslo 5 dager 32 500 kr
22 Sep
22 Sep
Oracle Database 23ai: Administration Workshop [+]
Oracle Database: Administration Workshop [-]
Les mer
3 dager 24 500 kr
Check Point Certified Security Expert (CCSE) – R81.20 [+]
Check Point Certified Security Expert (CCSE) – R81.20 [-]
Les mer
Nettkurs 2 timer 1 690 kr
Er innboksen din et stort kaos? Bruker du mye tid på e-post? Vi viser deg hvordan du kan jobbe smart med innkommende og utgående kommunikasjon. [+]
Er innboksen din et stort kaos? Bruker du mye tid på e-post? Vi viser deg hvordan du kan jobbe smart med innkommende og utgående kommunikasjon. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause.  Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Muligheter rundt e-post Alternativer og innstillinger for e-post Følge opp sendt e-post Automatisk håndtering av e-post ved hjelp av Hurtigtrinn og Regle   Søk og sortering Effektiv bruk av søk Søkemapper for hyppige og «komplekse» søk Visningsinnstillinger for å få fokus på det viktigste   Gjenbruk Lage maler for faste e-poster Opprette hurtigdeler for å kunne sette inn relevant innhold Bruk av distribusjonslister (grupper)   3 gode grunner til å delta 1. Se hvilke muligheter som er tilgjengelig knyttet til e-post 2. Du lærer å automatisere prosessering av e-post med regler og hurtigtrinn 3. Få tips til å bruke søk og søkemapper på en effektiv måte   [-]
Les mer
Virtuelt eller personlig Bergen 3 uker 28 000 kr
28 Oct
3-ukers AutoCAD kurs inneholder 2D Grunnkurs, 2D Videregående kurs og 3D Introduksjonskurs. I tillegg gjennomføres oppgaver og prosjektarbeid på egen kurs-PC. [+]
Kurset består av tre AutoCAD kursmoduler - 2D Grunnkurs og 2D Videregående, samt introduksjon til 3D modellering. Kurset gir deltakeren meget god kunnskap om AutoCAD, samt erfaring med utarbeidelse og oppbygging av tegninger. Mange av våre deltakerere har gjennomført kurset for å benytte dette på en CV ved søknad på ny jobb.   Følgende kursmoduler gjennomføres i dette kurset:  AutoCAD 2D Grunnkurs Hovedprinsipper i AutoCAD's brukergrensesnitt Oppretting og lagring av tegninger Tegne- og editeringskommandoer Hjelpefunksjoner for å tegne nøyaktig Skjermstyring Lagoppbygging og struktur Målsetting, teksting og skravering Symbol- og blokkhåndtering Layout/plotting AutoCAD 2D Videregående kurs Tilpasse AutoCAD til eget brukermiljø Blokker med attributter og uttrekk til tabell/Excel Tabeller og Fields XREF - eksterne referanser Import og håndtering av PDF filer Innsetting av andre filformater som eks. DWF, raster filer og DGN Definering og bruk av annotative objekter ved målsetting og teksting. Avansert plotting Funksjoner i Express Tools AutoCAD 3D introduksjonskurs Koordinatsystemer Angivelse av punkter i rommet Solid modellering Surface modellering Mesh modellering Sette opp Layout i paperspace, projeksjoner og snitt Lagstruktur og lagdefinisjon, farger, linjetyper, målsetting Lyssetting, naturlig sollys og lokale lyskilder Knytte materialer til objekt eller til lag Renderfunksjoner Animasjon   Oppgaver Oppgaver knyttet til kurset, samt tilleggsoppgaver ift. fag.   Prosjektoppgaver Prosjektoppgaver knyttet til 2D tegning og 3D modellering.     [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Gir en oversikt over grunnleggende objektorientert programdesign og Java-programmering. Begreper innen objektorientering: klasser, objekter, innkapsling mm. Java-syntaks:... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Et utvalg (6) av øvingsoppgavene må være godkjent for å få gå opp til eksamen. Det vil settes nærmere krav til utvalget, - opplysninger om dette gis ved kursstart. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 4 timer. Ansvarlig: Vuokko-Helena Caseiro Eksamensdato: 17.12.13 / 20.05.14         Læremål: Etter å ha gjennomført emnet Programmering i Java skal kandidaten ha følgende samlede læringsutbytter: KUNNSKAPER:Kandidaten:- kan forklare hva et program er- kjenner til enkle prinsipper innen objektorientert programmering- kan forklare hvorfor brukerkommunikasjon og logikk til et program knyttet til det problemet som skal løses, bør legges til ulike klasser FERDIGHETER:Kandidaten:- kan sette opp programmiljø for å utvikle og kjøre Java-program på egen PC- kan lage strukturert og oversiktlig programkode- kan beskrive klasser og kontrollstrukturer ved hjelp av enkle klassediagram og aktivitetsdiagram- kan, med noe hjelp, anvende klasser fra Java API'et GENERELL KOMPETANSEKandidaten:- kan anvende objektorientert tankegang til å analysere og løse enkle problemer Innhold:Gir en oversikt over grunnleggende objektorientert programdesign og Java-programmering. Begreper innen objektorientering: klasser, objekter, innkapsling mm. Java-syntaks: Datatyper, betingelser, valg, løkker, uttrykk. Innlesing og utskrift. Tabeller.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Programmering i Java 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Bedriftsintern 3 dager 17 500 kr
This workshop will teach you Spring Framework basics and dives into Spring Boot and Spring Cloud to create Microservices. [+]
This workshop will teach you Spring Framework basics and dives into Spring Boot and Spring Cloud to create Microservices.Introduction     Design goals and principles     IOC and dependency injection     Spring Ecosystem Spring Framework     Spring Beans     Java Configuration, Annotation Based Configuration     Dependency injection, beans and properties     Bean Lifecycle     Property Sources, Environment abstraction Spring Boot     Starters, AutoConfiguration, Properties, Actuators     Devtools, LiveReload, debugging     Testing, Test-Properties     Packaging, Logging, YAML, Profiles     Actuator, Monitoring     Data Access with JPA     Restservices with Spring MVC and Spring Data Rest     Security     Custom Spring Boot Starters Microservices     Twelve-factor Apps     Overview of Microservices with Spring Boot / Spring Cloud     Orchestrating a Microservice system with Spring Cloud Netflix stack After the workshop, the participants will be able to independently create web applications using the technologies and frameworks used in the workshop. [-]
Les mer
3 dager 21 000 kr
Oracle Database: Analytic SQL for Data Warehousing [+]
Oracle Database: Analytic SQL for Data Warehousing [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
The Implementing Cisco Enterprise Wireless Networks course gives you the knowledge and skills needed to secure wireless network infrastructure and troubleshoot any relate... [+]
COURSE OVERVIEW You’ll learn how to implement and secure a wireless network infrastructure and use Cisco Identity Service Engine (ISE), Cisco Prime Infrastructure (PI), and Cisco Connect Mobile Experience to monitor and troubleshoot network issues.   The course provides hands-on labs to reinforce concepts including deploying Cisco Prime Infrastructure Release 3.5, Cisco Catalyst 9800 Wireless Controller Release IOS XE Gibraltar 16.10, Cisco Digital Network Architecture (DNA) Center Release 1.2.8, Cisco CMX Release 10.5, Cisco MSE Release 8.0 features and Cisco Identity Services Engine (ISE) Release 2.4.   This course also helps you prepare to take the Implementing Cisco Enterprise Wireless Networks (300-430 ENWLSI) exam, which is part of the new CCNP Enterprise certification. Passing the exam will also provide you with the Cisco Certified Specialist - Enterprise Wireless Implementation certification.   TARGET AUDIENCE Individuals needing to understand how to implement, secure and troubleshoot a Cisco Enterprise Wireless Network.   COURSE OBJECTIVES After completing this course you should be able to: Implement network settings to provide a secure wireless network infrastructure Troubleshoot security issues as it relates to the wireless network infrastructure Implement a secure wireless client and troubleshoot wireless client connectivity issues Implement and troubleshoot QoS in wireless networks Implement and troubleshoot advanced capabilities in wireless network services   COURSE CONTENT Securing and Troubleshooting the Wireless Network Infrastructure Implement Secure Access to the WLCs and Access Points Configure the Network for Access Point 802.1X Authentication Use Cisco DNA Center for Controller and AP Auto Install Implement Cisco Prime Infrastructure Define Network Troubleshooting Techniques Troubleshoot Access Point Join Issues Monitor the Wireless Network Implementing and Troubleshooting Secure Client Connectivity Configure the Cisco WLC for Wireless Client 802.1x Authentication Configure the Wireless Client for 802.1X Authentication Configure a Wireless LAN for FlexConnect Implement Guest Services in the Wireless Network Configure the Cisco WLC for Centralized Web Authentication Configure Central Web Authentication on Cisco ISE Implement BYOD Implement Location-Aware Guest Services Troubleshoot Client Connectivity Describe Issues that Affect Client Performance Monitor Wireless Clients Implementing and Troubleshooting QoS in Wireless Networks Implement QoS in the Wireless Network Configure the Cisco WLC to Support Voice Traffic Optimize Wireless Utilization on the Cisco WLC Implement Cisco AVC in the Wireless Network Implement Multicast Services Implement mDNS Service Implement Cisco Media Stream Troubleshoot QoS Issues in the Wireless Network Troublehoot mDNS Issues Troubleshoot Media Stream Issues Implementing and Troubleshooting Advanced Wireless Network Services Implement Base Location Services on Cisco Prime Infrastructure Implement Hyperlocation in the Wireless Network Implement Detect and Locate Services on Cisco CMX Implement Analytics on Cisco CMX Implement Presence Services on Cisco CMX Monitor and Locate Rogue Devices with Cisco Prime Infrastructure and Cisco CMX Monitor and Detect Wireless Clients with Cisco CMX and Cisco DNA Center Run Analytics on Wireless Clients Troubleshoot Location Accuracy with Cisco Hyperlocation Monitor and Manage RF Interferers on the Cisco WLC Monitor and Manager RF Interferers on Cisco Prime Infrastructure and Cisco CMX Labs Lab Familiarization (Base Learning Lab) Configure Secure Management Access for WLCs and APs Add Network Devices and External Resources to Cisco Prime Infrastructure Capture a Successful AP Authentication Implement AAA Services for Central Mode WLANs Implement AAA Services for FlexConnect Mode WLANs Configure Guest Services in the Wireless Network Configure BYOD in the Wireless Network Capture a Successful Client Authentications Configure QoS in the Wireless Network for Voice and Video Services Configure Cisco AVC in the Wireless Network Capture Successful QoS Traffic Marking in the Wireless Network Configure Detect and Locate Services on the Cisco CMX Identify Wireless Clients and Security Threats [-]
Les mer