IT-kurs
Kurs i programvare og applikasjoner
Du har valgt: Västra Frölunda
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Västra Frölunda ) i Kurs i programvare og applikasjoner
 

Sentrum 3 dager 12 300 kr
Trenger du å bygge opp store og avanserte regneark? Ønsker du å lage rapporter og beregninger på store tallgrunnlag? Vil du finne ut hvordan du kan effektivisere arbe... [+]
Trenger du å bygge opp store og avanserte regneark? Ønsker du å lage rapporter og beregninger på store tallgrunnlag? Vil du finne ut hvordan du kan effektivisere arbeidet ditt i Excel? Ønsker du å lære de første stegene mot automatiserte rapporter? Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Generelt om regneark Om regneark og infrastruktur Bruke tastatur og hurtigtaster effektiv Absolutte referanser og definerte navn   Funksjoner Mer om funksjoner, hvis, antall.hvis, summer.hvis.sett Lær om "må ha funksjonen" Finn.rad [Vlookup] Andre funksjoner for spesielle oppgaver   Avansert formatering Spesiell formatering – dato, tekst og egendefinert Betinget formatering og cellestiler   Dag 2    Lister og tabeller Viktige regler og råd Bruk av autofilter og sortering Tabellfunksjonalitet Validering ved inntasting Beregninger av store datamengder via gode funksjoner   Pivottabell Hva er pivottabell og hvordan lage raske og enkle rapporter Utvidede muligheter i Pivot som grupperinger, vis verdier som og slicer   Dag 3   Metoder for dataimport Direkte import fra database   Innføring til makro Spille inn /registrere makro Ord/uttrykk og VBA editor   Datavask Slette tommer rader, fylle tomme celler Bruk av funksjoner for å klargjøre datagrunnlag Identifisere og håndtere avvik i grunnlag   Alternative temaer (hvis tid) Tips til diagrammer Hva hvis analyse Konsolidering   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Virtuelt klasserom 2 dager 8 900 kr
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan ... [+]
Kursinstruktør   Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer. Kursinstruktør   Jonny Austad Jonny Austad er utdannet som Adjunkt og har jobbet som lærer og instruktør siden 1989. Han har dessuten jobbet mye med support og drifting av nettverk og vet som oftest hva som er vanlige problemer ute i bedriftene. Han var den første Datakort-læreren i landet (høsten 1997), og har Office-pakken med spesielt Excel som sitt hjertebarn. Jonny er en meget hyggelig og utadvendt person som elsker å undervise med smarte løsninger på problemer samt vise smarte tips og triks i de ulike programmene. Kursinnhold Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Bruk av stiler gir profesjonelle og flotte dokumenter. Lær å lage innholdsfortegnelse, stikkordliste og figurliste automatisk. Profesjonelt sideoppsett med spalter, marger, sidefarger, sidekantlinjer og dokumenttemaer. Auto korrektur, byggeblokker, egenskaper og felt gjør det enklere å gjenbruke tekst. Flere deldokumenter kan samles i et hoved dokument ved hjelp av hoveddokumentvisning. I lange dokumenter kan du ha uliketopp- og bunntekster og selv bestemme side nummerering. For å friske opp et dokument kan du sette inn utklipp, figurer, SmartArt og diagram. Med tekstbokser kan du presentere sitater eller sammendrag fra dokumentet. Tabeller kan brukes til å presentere informasjon på en oversiktlig måte men kan også sorteres og inneholde beregninger. Maler brukes for å sikre at dokumenter av samme type får en ensartet formatering. Felt, innholdskontroller og skjemakontroller kan settes inn for å effektivisere bruken av maler. Med makroer kan du effektivisere avanserte oppgaver som består av serie med handlinger. Med fletting kan du masseprodusere brev, konvolutter, etiketter og e-post. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Word erfaring som de gjerne deler med deg! Meld deg på Word-kurs allerede i dag og sikre deg plass! Lær deg: behandling av stiler rask og enkel opprettelse av innholdsfortegnelse sette inn forsider samarbeid om felles dokument spalter beregninger i tabeller innsetting av diagram sett inn bilder og bildetekst grafikk og tegning maler og skjema bruk av makroer integrasjon med Excel og andre programmer [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Majorstuen 2 dager 10 900 kr
03 Nov
Med Microsoft Project 365 får du et godt verktøy for planlegging og oppfølging av prosjekter. Dette kurset lærer deg å håndtere ressurser, aktiviteter og budsjett. Du kan... [+]
Kursinstruktør Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer. Kursinnhold Med Microsoft Project 365 får du et godt verktøy for planlegging og oppfølging av prosjekter. Dette kurset lærer deg å håndtere ressurser, aktiviteter og budsjett. Du kan opprette, oppdatere og gjøre enkel oppfølging i et prosjekt. Vi går igjennom hvordan du, både grafisk og i tekst, ser effekten av forandringer i prosjekt og hvordan du kan skrive ut dine prosjektplaner. Målet med kurset er å gi deg en prossessorientert tilnærming i Microsoft Project 365 slik at du er i stand til å arbeide målrettet og effektivt med programvaren etter kurset.   Sett opp Project for bruk i din bedrift – tips og triks. Lag egne kalendere for enkeltpersoner og/eller grupper. Hold oversikt over tids- og ressursbruk. Vit hvem som jobber hvor – på tvers av prosjekter. Kontroller kostnadene i prosjektet. Ta hensyn til lønnsøkninger og variable kostnader. Vis og kontroller hvordan prosjektet går i forhold til opprinnelig plan (Baseline). Presenter fremdrift på papir og på nett. Utnytt de nye rapportmulighetene. Ta hensyn til at arbeid noen ganger foregår på kvelden og i helger. Se hvordan du kan få vakre utskrifter med egendefinerte komponenter ved hjelp av Project sine rapportegenskaper. Lag dine egne tabeller og visninger, skreddersydd til ditt bruk. Gjør rapportering og oppfølging enkel slik at du kan konsentrere deg om å lede prosjektet. Bruk tidslinje for enkelkommunikasjon av fremdrift. Kommunikasjon med andre programmer.   I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktivoppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! NB: Ta med egen PC     Av innhold kan vi nevne: - Innstilling av programvaren – en reprise fra grunnkurset - Hva vil jeg ha ut av mine planer og hvordan får jeg det - Effektiv og målrettet planlegging - Bruk av ressurspool – Ressursstyring på tvers av prosjekter - Integrasjon og kobling mot Excel i rapportering og kostnadsoppfølging - En grundig gjennomgang av mulighetene i Project - Bygg dine egne rapporter og visninger - Bruk av flere kalendere - Detaljert budsjettering og kostnadsoppfølging - Få hjelp og råd med dine konkrete utfordringer i Project    Meld deg på Project-kurs allerede i dag og sikre deg plass!   "Kurset var svært konkret, nyttig med tanke på mine daglige oppgaver."Henning Colbjørnsen- Rælingen kommune   [-]
Les mer
4 dager 22 500 kr
MB-220: Dynamics 365 Customer Insights - Journeys [+]
MB-220: Dynamics 365 Customer Insights - Journeys [-]
Les mer
10 timer 6 000 kr
Basic Excel training [+]
This is a basic course in Excel http://www.google.com [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Deltakerne lærer å håndtere lister på en rask og effektiv måte og vi ser også på noen av fordelene ved å gjøre en liste om til en tabell og når en ikke bør gjøre det. Ved... [+]
Kursinnhold Flash Fill Diagrammer Sparkline grafikk Hurtiganalyse Sortering og filtrering Avansert filter Delsammendrag Tabeller Målgruppe Deg som Jobber med lister i Excel Ønsker å effektivisere databehandlingen i Excel Vil ha en kjapp gjennomgang av disse elementene. Har grunnleggende kunnskaper i Excel og ønsker å lære mer. Forkunnskaper Har laget regneark Har kunnskaper tilsvarende «Ta kontroll over regnearket» Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
05 Sep
24 Oct
05 Dec
Vi ser på Excels verktøy for å analysere data og «se inn i fremtiden». Vi lager også nedtrekksmenyer, kontrollerer at brukerne legger inn godkjente data, fjerner duplikat... [+]
Gjennomgang av Excels dataverktøy med eksempler (Data/Dataverktøy) Scenariobehandling Målsøking (La Excel jobbe med å finne løsningen for deg ) Datatabeller Problemløser verktøyet Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Oslo 4 dager 22 500 kr
25 Aug
25 Aug
06 Oct
https://www.glasspaper.no/kurs/az-500/ [+]
AZ-500: Microsoft Azure Security Technologies [-]
Les mer
Nettkurs 5 timer 549 kr
I dette kurset kommer seniorutvikler John Inge Muldal Erlandsen til å dekke Azures viktigste fundamentale konsepter og hjelpe deg på din vei mot skyen. Han kommer til å d... [+]
Dette grunnleggende kurset om Microsoft Azure gir deg en solid forståelse av fundamentale konsepter i Azure-skymiljøet. Kursholderen, seniorutvikler John Inge Muldal Erlandsen, vil veilede deg gjennom nøkkelkomponentene og mulighetene som Azure tilbyr. Microsoft Azure er en ledende skyplattform og konkurrerer direkte med Amazon Web Services (AWS). Azure inneholder et bredt spekter av enheter, funksjoner og tjenester som du kan bruke for å oppfylle ulike behov innen skytjenester. Dette kurset er spesielt rettet mot forberedelse til AZ-900-eksamen, som fører til Microsoft-sertifiseringen "Microsoft Certified Fundamentals". Målet med kurset er å gi deg tilstrekkelig kunnskap og forberedelse til å bestå denne eksamenen med suksess. Kurset vil dekke følgende emner: Kapittel 1: Introduksjon Kapittel 2: Tjenester Kapittel 3: Verktøy Kapittel 4: Sikkerhet Kapittel 5: Styring Kapittel 6: Administrasjon Kapittel 7: Avslutning   Varighet: 4 timer og 32 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
1 dag 7 600 kr
Med Power Automate kan du automatisere forretningsprosesser og handlinger på tvers av organisasjonen, med lite eller ingen koding. Ta farvel med kjedelige, repetitive opp... [+]
Med Power Automate kan du automatisere forretningsprosesser og handlinger på tvers av organisasjonen, med lite eller ingen koding. Ta farvel med kjedelige, repetitive oppgaver og effektiviser hverdagen. Ikke minst er Power Automate ofte en del av Microsoft 365 lisensen du kanskje allerede har. Power Automate er Microsoft sin løsning for automatisering av prosesser, og er en tjeneste som lar deg utvikle flyter på tvers av en rekke applikasjoner og tjenester med lite eller ingen koding. Du kan selvfølgelig få tjenestene i Microsoft 365 til å snakke sammen slik du vil, men det finnes også flere hundre koblinger til andre eksterne tjenester. I tillegg har du naturligvis mulighet til å benytte generelle tilkoblinger, for å hente data fra egne APIer, databaser og tjenester. Power Automate gir muligheter til brukere på tvers av organisasjonen som tidligere i stor grad har vært forbeholdt utviklere.  I løpet av kurset vil deltagere få en hands-on opplevelse av hva Power Automate er, hva det kan brukes til, og hvordan en kan jobbe med det. Kursholderen vil gjøre deltakerne godt kjent med terminologien, demonstrere løsninger og utfordre med øvelser.  Dette er et introduksjonskurs, så det er naturligvis mye vi ikke vil rekke å gå gjennom. Kursleder vil peke deltagerne til gode kilder for videre læring. Det er også mulig å be om bedriftsinterne kurs på videregående nivå, der man kan spesifisere ønsket fokus og spesifikke behov. Disse kan også kjøres som workshops.   TA MED EGEN PC   Kursinnhold Power Automate - det store bildet Ulike flyttyper Bli kjent med arbeidsflaten Datakilder og koblinger Beste praksis for navngivning, utvikling, dokumentering m.m. Bruksområder og viktige begrensninger   [-]
Les mer
Virtuelt klasserom 2 timer 1 990 kr
Excel – Du trodde du kunne det? [+]
Excel – Du trodde du kunne det? [-]
Les mer
Oslo 5 dager 32 500 kr
22 Sep
22 Sep
Oracle Database 23ai: Administration Workshop [+]
Oracle Database: Administration Workshop [-]
Les mer
Virtuelt klasserom 4 dager 24 000 kr
This course provides students with the skills and knowledge required to successfully create and maintain the cloud and edge portions of an Azure IoT solution. The course ... [+]
  An Azure IoT Developer is responsible for implementing and then maintaining the cloud and edge portions of an Azure IoT solution. In addition to configuring and maintaining devices by using Azure IoT services and other Microsoft tools, the IoT Developer also sets up the physical devices and is responsible for maintaining the devices throughout the life cycle. The IoT Developer implements designs for IoT solutions, including device topology, connectivity, debugging and security. For Edge device scenarios, the IoT Developer also deploys compute/containers and configures device networking, which could include various edge gateway implementations. The IoT Developer implements designs for solutions to manage data pipelines, including monitoring and data transformation as it relates to IoT. The IoT Developer works with data engineers and other stakeholders to ensure successful business integration. IoT Developers should have a good understanding of Azure services, including data storage options, data analysis, data processing, and the Azure IoT PaaS versus SaaS options. After completing this course, students will be able to: Create, configure, and manage an Azure IoT hub. Provision devices by using IoT Hub and DPS, including provisioning at scale. Establish secure 2-way communication between devices and IoT Hub. Implement message processing by using IoT Hub routing and Azure Stream Analytics. Configure the connection to Time Series Insights and support business integration requirements. Implement IoT Edge scenarios using marketplace modules and various edge gateway patterns. Implement IoT Edge scenarios that require developing and deploying custom modules and containers. Implement device management using device twins and direct methods. Implement solution monitoring, logging, and diagnostics testing. Recognize and address security concerns and implement Azure Security Center for IoT. Build an IoT Solution by using Azure IoT Central and recongize SaaS opportunities for IoT. Course prerequisites IoT Developers should have basic programming skills in at least one Azure-supported language, including C#, Node.js, C, Python, or Java. Software development experience is a prerequisite for this course, but no specific software language is required, and the experience does not need to be at a professional level. Data Processing Experience: General understanding of data storage and data processing is a recommended but not required.  Cloud Solution Awareness: Students should have a basic understanding of PaaS, SaaS, and IaaS implementations. Microsoft Azure Fundamentals (M-AZ-900T00/M-AZ900), or equivalent skills, is recommended.  This course helps to prepare for exam AZ-220.   Agenda Module 1: Introduction to IoT and Azure IoT Services -Business Opportunities for IoT-Introduction to IoT Solution Architecture-IoT Hardware and Cloud Services Module 2: Devices and Device Communication -IoT Hub and Devices-IoT Developer Tools-Device Configuration and Communication Module 3: Device Provisioning at Scale -Device Provisioning Service Terms and Concepts-Configure and Manage the Device Provisioning Service-Device Provisioning Tasks Module 4: Message Processing and Analytics -Messages and Message Processing-Data Storage Options-Azure Stream Analytics Module 5: Insights and Business Integration -Business Integration for IoT Solutions-Data Visualization with Time Series Insights-Data Visualization with Power BI Module 6: Azure IoT Edge Deployment Process -Introduction to Azure IoT Edge-Edge Deployment Process-Edge Gateway Devices Module 7: Azure IoT Edge Modules and Containers -Develop Custom Edge Modules-Offline and Local Storage Module 8: Device Management -Introduction to IoT Device Management-Manage IoT and IoT Edge Devices-Device Management at Scale Module 9: Solution Testing, Diagnostics, and Logging -Monitoring and Logging-Troubleshooting Module 10: Azure Security Center and IoT Security Considerations -Security Fundamentals for IoT Solutions-Introduction to Azure Security Center for IoT-Enhance Protection with Azure Security Center for IoT Agents Module 11: Build an IoT Solution with IoT Central -Introduction to IoT Central-Create and Manage Device Templates-Manage Devices in Azure IoT Central [-]
Les mer