IT-kurs
Kurs i programvare og applikasjoner
Du har valgt: Västra Götalands län
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Västra Götalands län ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 3 timer 549 kr
Datavisualisering handler om hvordan man presenterer data på en oversiktlig og profesjonell måte. Det handler om å gi rask og effektiv innsikt i noe som ellers ville vært... [+]
Datavisualisering handler om hvordan man presenterer data på en oversiktlig og profesjonell måte. Det handler om å gi rask og effektiv innsikt i noe som ellers ville vært uoversiktlig og komplisert. Vi mennesker er langt flinkere til å prosessere data som presenteres visuelt enn vi er til å forstå store regneark fulle av tall. I dette kurset, ledet av Espen Faugstad, vil du lære å opprette, tilpasse og perfeksjonere presentasjonen av data i diagramformat ved hjelp av Microsoft Excel. Du vil lære å representere data i forskjellige diagramtyper, inkludert stolpediagram, linjediagram, sektordiagram, hierarkidiagram, statistisk diagram, radardiagram og kombinasjonsdiagram. For å ta dette kurset, kreves grunnleggende forståelse av hvordan Microsoft Excel fungerer. Kurset er strukturert i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Diagramutforming Kapittel 3: Diagramformat Kapittel 4: Diagramtyper Kapittel 5: Annet Kapittel 6: Print Kapittel 7: Avslutning Etter å ha fullført kurset vil du være i stand til å effektivt bruke diagrammer i Excel for å presentere data på en måte som gjør det enkelt for andre å forstå og dra nytte av informasjonen.   Varighet: 2 timer og 44 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt eller personlig 4 dager 14 450 kr
Kurset er rettet mot personer som skal konstruere VVS-anlegg i 3D. [+]
  Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Revit MEP MagiCAD VVS grunnkurs Her er et utvalg av temaene du vil lære på kurset Grunnleggende innføring i Revit Håndtering av Views, etasjer, manøvering i modell, visningsalternativer, redigeringsfunksjoner. Etablering av prosjekt. Linke modeller, sette opp etasjer og Views Prosjektering av ventilasjonsanlegg, varme- og forbruksvannsystem og avløpssystem IFC-eksport Utsparinger Etter kurset kan du bruke grunnleggende funksjoner i Autodesk Revit MEP og MagiCAD for Revit med fokus på å sette opp, importere og linke prosjekter, konstruere VVS-installasjoner, samt dokumentasjon. Lære å utforme en VVS-modell slik at mest mulig informasjon kan utnyttes med hensyn til BIM.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Oslo 5 dager 30 500 kr
18 Aug
18 Aug
Oracle Database 23ai: Introduction to SQL Workshop [+]
Oracle Database: Introduction to SQL [-]
Les mer
1 dag 9 500 kr
21 Aug
AI-3016: Develop custom copilots with Azure AI Studio [+]
AI-3016: Develop custom copilots with Azure AI Studio [-]
Les mer
Virtuelt klasserom 4 timer 24 500 kr
This course teaches Azure Solution Architects how to design infrastructure solutions. Course topics cover governance, compute, application architecture, storage, data int... [+]
The course combines lecture with case studies to demonstrate basic architect design principles. Successful students have experience and knowledge in IT operations, including networking, virtualization, identity, security, business continuity, disaster recovery, data platforms, and governance. Students also have experience designing and architecting solutions. COURSE OBJECTIVES Skills gained Design a governance solution. Design a compute solution. Design an application architecture. COURSE CONTENT Module 1: Design compute and application solutions In this module you will learn about governance, compute, and application architectures. Lessons of Module 1 Design for governance Design for compute solutions Design for application architectures Lab : Case studies of Module 1 After completing this module, students will be able to: Design a governance solution. Design a compute solution. Design an application architecture. Module 2: Design storage solutions In this module, you will learn about non-relational storage, relational storage, and data integration solutions. Lessons of Module 2 Design a non-relational storage solution. Design a relational storage solution. Design a data integration solution. Lab : Case studies of Module 2 After completing this module, students will be able to: Design non-relational storage solutions. Design relational storage solutions. Design a data integration solution. Module 3: Design networking and access solutions In this module you will learn about authentication and authorization, identity and access for applications, and networking solutions. Lessons of Module 3 Design authentication and authorization solutions Design networking solutions Lab : Case studies of Module 3 After completing this module, students will be able to: Design authentication and authorization solutions. Design network solutions. Module 4: Design business continuity solutions Lessons of Module 4 Design for backup and disaster recovery Design monitoring solutions Design for migrations Lab : Case studies of Module 4 After completing this module, students will be able to: Design backup and disaster recovery. Design monitoring solutions. Design for migrations. [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
15 Sep
27 Oct
08 Dec
Tanken med dette kurset er å vise litt av hva makroer i Excel er og dermed gi deltakerne en forsmak på våre mer avanserte kurs i Visual Basic for Applications (VBA). Dett... [+]
Introduksjon til VBA   Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
05 Sep
24 Oct
05 Dec
I dette kurset konsentrerer vi oss om oppslagsfunksjonene FINN.RAD, FINN.KOLONNE OG XOPPSLAG og viser avanserte eksempler. Vi tar også for oss noen eksempler på bruk av f... [+]
Kursinnhold FINN.RAD() FINN.KOLONNE() XOPPSLAG() – den nye oppslagsfunksjonen. Super funksjonalitet INDEKS() / SAMMENLIGNE() [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excelkurs Basis - elæringskurs [+]
Excelkurs Basis - elæringskurs [-]
Les mer
Nettkurs 2 timer 549 kr
Ta vårt videokurs i Excel fra din datamaskin. Lær så mye du vil, når du vil. Du får gratis hjelp. Du får kursbevis. Du får tilgang til alle kurs. Meld deg på her! [+]
Dette kurset er skreddersydd for deltakere som allerede har fullført vårt grunnleggende Excel-kurs og nå ønsker å ta sine ferdigheter til et avansert nivå. Kursinstruktør Espen Faugstad vil veilede deg gjennom en rekke avanserte emner, inkludert opprettelse av pivottabeller, bruk av funksjoner og formler, og mye mer. Kurset dekker grundig bruken av en rekke funksjoner og formler, inkludert SUMMER, MIN, MAKS, AVKORT, AVRUND, ANTALL, ANTALLA, KJEDE.SAMMEN, TRIMME, VENSTRE, HØYRE, DELTEKST, FINN.RAD, HVIS, SUMMERHVIS, ANTALL.HVIS og GJENNOMSNITTHVIS. I tillegg vil kurset veilede deg gjennom henting av ekstern data, sortering og filtrering, fjerning av duplikater, og gruppering av data.   Innhold: Kapittel 1: Pivottabeller Kapittel 2: Formler og Funksjoner Kapittel 3: Formelrevisjon Kapittel 4: Ekstern Data Kapittel 5: Sortering og Filtrering Kapittel 6: Dataverktøy Kapittel 7: Gruppering av Data Kapittel 8: Arkbeskyttelse Kapittel 9: Avslutning   Varighet: 2 timer og 17 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Bedriftsintern 4 dager 32 000 kr
This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a com... [+]
Objectives This course teaches participants the following skills: Design and build data processing systems on Google Cloud Platform Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow Derive business insights from extremely large datasets using Google BigQuery Train, evaluate, and predict using machine learning models using Tensorflow and Cloud ML Leverage unstructured data using Spark and ML APIs on Cloud Dataproc Enable instant insights from streaming data   All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Data Engineering -Explore the role of a data engineer-Analyze data engineering challenges-Intro to BigQuery-Data Lakes and Data Warehouses-Demo: Federated Queries with BigQuery-Transactional Databases vs Data Warehouses-Website Demo: Finding PII in your dataset with DLP API-Partner effectively with other data teams-Manage data access and governance-Build production-ready pipelines-Review GCP customer case study-Lab: Analyzing Data with BigQuery Module 2: Building a Data Lake -Introduction to Data Lakes-Data Storage and ETL options on GCP-Building a Data Lake using Cloud Storage-Optional Demo: Optimizing cost with Google Cloud Storage classes and Cloud Functions-Securing Cloud Storage-Storing All Sorts of Data Types-Video Demo: Running federated queries on Parquet and ORC files in BigQuery-Cloud SQL as a relational Data Lake-Lab: Loading Taxi Data into Cloud SQL Module 3: Building a Data Warehouse -The modern data warehouse-Intro to BigQuery-Demo: Query TB+ of data in seconds-Getting Started-Loading Data-Video Demo: Querying Cloud SQL from BigQuery-Lab: Loading Data into BigQuery-Exploring Schemas-Demo: Exploring BigQuery Public Datasets with SQL using INFORMATION_SCHEMA-Schema Design-Nested and Repeated Fields-Demo: Nested and repeated fields in BigQuery-Lab: Working with JSON and Array data in BigQuery-Optimizing with Partitioning and Clustering-Demo: Partitioned and Clustered Tables in BigQuery-Preview: Transforming Batch and Streaming Data Module 4: Introduction to Building Batch Data Pipelines -EL, ELT, ETL-Quality considerations-How to carry out operations in BigQuery-Demo: ELT to improve data quality in BigQuery-Shortcomings-ETL to solve data quality issues Module 5: Executing Spark on Cloud Dataproc -The Hadoop ecosystem-Running Hadoop on Cloud Dataproc-GCS instead of HDFS-Optimizing Dataproc-Lab: Running Apache Spark jobs on Cloud Dataproc Module 6: Serverless Data Processing with Cloud Dataflow -Cloud Dataflow-Why customers value Dataflow-Dataflow Pipelines-Lab: A Simple Dataflow Pipeline (Python/Java)-Lab: MapReduce in Dataflow (Python/Java)-Lab: Side Inputs (Python/Java)-Dataflow Templates-Dataflow SQL Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer -Building Batch Data Pipelines visually with Cloud Data Fusion-Components-UI Overview-Building a Pipeline-Exploring Data using Wrangler-Lab: Building and executing a pipeline graph in Cloud Data Fusion-Orchestrating work between GCP services with Cloud Composer-Apache Airflow Environment-DAGs and Operators-Workflow Scheduling-Optional Long Demo: Event-triggered Loading of data with Cloud Composer, Cloud Functions, -Cloud Storage, and BigQuery-Monitoring and Logging-Lab: An Introduction to Cloud Composer Module 8: Introduction to Processing Streaming Data Processing Streaming Data Module 9: Serverless Messaging with Cloud Pub/Sub -Cloud Pub/Sub-Lab: Publish Streaming Data into Pub/Sub Module 10: Cloud Dataflow Streaming Features -Cloud Dataflow Streaming Features-Lab: Streaming Data Pipelines Module 11: High-Throughput BigQuery and Bigtable Streaming Features -BigQuery Streaming Features-Lab: Streaming Analytics and Dashboards-Cloud Bigtable-Lab: Streaming Data Pipelines into Bigtable Module 12: Advanced BigQuery Functionality and Performance -Analytic Window Functions-Using With Clauses-GIS Functions-Demo: Mapping Fastest Growing Zip Codes with BigQuery GeoViz-Performance Considerations-Lab: Optimizing your BigQuery Queries for Performance-Optional Lab: Creating Date-Partitioned Tables in BigQuery Module 13: Introduction to Analytics and AI -What is AI?-From Ad-hoc Data Analysis to Data Driven Decisions-Options for ML models on GCP Module 14: Prebuilt ML model APIs for Unstructured Data -Unstructured Data is Hard-ML APIs for Enriching Data-Lab: Using the Natural Language API to Classify Unstructured Text Module 15: Big Data Analytics with Cloud AI Platform Notebooks -What’s a Notebook-BigQuery Magic and Ties to Pandas-Lab: BigQuery in Jupyter Labs on AI Platform Module 16: Production ML Pipelines with Kubeflow -Ways to do ML on GCP-Kubeflow-AI Hub-Lab: Running AI models on Kubeflow Module 17: Custom Model building with SQL in BigQuery ML -BigQuery ML for Quick Model Building-Demo: Train a model with BigQuery ML to predict NYC taxi fares-Supported Models-Lab Option 1: Predict Bike Trip Duration with a Regression Model in BQML-Lab Option 2: Movie Recommendations in BigQuery ML Module 18: Custom Model building with Cloud AutoML -Why Auto ML?-Auto ML Vision-Auto ML NLP-Auto ML Tables [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excelfunksjoner - elæringskurs [+]
Excelfunksjoner - elæringskurs [-]
Les mer
Virtuelt klasserom 3 dager 22 500 kr
30 Sep
02 Dec
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual CourseThe course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams, you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture    KursinnholdDette kurset forklarer det grunnleggende i softwaretesting. Det er basert på ISTQB- pensum og er akkreditert av BCS.    Kurset inneholder øvelser, prøveeksamener og spill for å fremheve sentrale deler av pensum. Dette sammen med kursmateriell og presentasjoner vil bistå i forståelse av begreper og metoder som blir presentert.   Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt   «Særs godt kurs med mye fokus på praktiske oppgaver som gjør læring vesentlig lettere. Engasjert kursleder hjelper også. Kursleder starter på et nivå som alle føler seg komfortabel med.» Alexander Røstum Course content Fundamentals of Testing This section looks at why testing is necessary, what testing is, and explains general testing principles, the fundamental test process, and psychological aspects of testing.   Skills Gained • Learn about the differences between the testing levels and targets• Know how to apply both black and white box approaches to all levels of testing• Understand the differences between the various types of review and be aware of Static Analysis• Learn aspects of test planning, estimation, monitoring and control• Communicate better through understanding standard definitions of terms• Gain knowledge of the different types of testing tools and the best way of implementing those tools   Testing throughout the software lifecycle Explains the relationship between testing and life cycle development models, including the V-model and iterative development. Outlines four levels of testing:• Component testing• Integration testing• System testing• Acceptance testing Describes four test types, the targets of testing:• functional• non-functional characteristics• structural• change-related Outlines the role of testing in maintenance.   Static Techniques Explains the differences between the various types of review, and outlines the characteristics of a formal review. Describes how static analysis can find defects.   Test Design Techniques This section explains how to identify test conditions (things to test) and how to design test cases and procedures. It also explains the difference between white and black box testing. The following techniques are described in some detail with practical exercises :• Equivalence Partitioning• Boundary Value Analysis• Decision Tables• State Transition testing• Statement and Decision testingIn addition, use case testing and experience-based testing (such as exploratory testing) are described, and advice is given on choosing techniques.   Test Management This section looks at organisational implications for testing and describes test planning and estimation, test monitoring and control. The relationship of testing and risk is covered,and configuration management and incident management.   Tool Support for Testing Different types of tool support for testing are described throughout the course. This session summarises them, and discusses how to use them effectively and how best to introduce a new tool.   The Exam The ISTQB Foundation exam is a 1-hour, 40 question multiple choice exam. There is an extra 15 minutes allowed for candidates whose first language is not English.The pass mark is 65% (26/40) and there are no pre requisites to taking this exam.The exam is a remote proctored exam [-]
Les mer
Oslo 4 dager 22 500 kr
01 Sep
01 Sep
03 Nov
DP-300: Administering Microsoft Azure SQL Solutions [+]
DP-300: Administering Microsoft Azure SQL Solutions [-]
Les mer