IT-kurs
Kurs i programvare og applikasjoner
Du har valgt: Vestfold
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Vestfold ) i Kurs i programvare og applikasjoner
 

Virtuelt eller personlig 1 dag 5 950 kr
AutoCAD P&ID Grunnkurs er ment for deg som skal bruke AutoCAD P&ID som verktøy til P&I-diagrammer. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   AutoCAD P&ID grunnkurs Her er et utvalg av temaene du vil lære på kurset: Opprette og håndtere P&ID-prosjekter Tegne og redigere P&ID-diagrammer Eksportere og Importere data via Excel Uttrekk av lister og rapporter Du vil lære å opprette og håndtere P&ID-prosjekter, tegne diagrammer med de verktøy og kommandoer som er designet til formålet, og bruke toolpalettenes utstyr, ventiler, fittings og instrumenter. I tillegg til å bruke valideringsverktøyet til å kvalitetssikre ditt prosjekt, eksportfunksjonen til å skape 'nøytrale' AutoCAD-kopier av dine P&ID-tegninger samt å lage forskjellige rapporter og datauttrekk for f.eks. utstyr, ventiler, instrumenter osv.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Klasserom + nettkurs Sentrum 1 dag 4 490 kr
Om du ikke har jobbet med Outlook tidligere, men skal begynne å ta programet i bruk? Da er dette kurset perfekt for deg! [+]
Har du lite erfaring med Outlook og ønsker en innføring i programmet? På dette kurset lærer du hvordan du bruker Outlook med sending av e-post, oppretting av kontakter, samt bruk av kalender og oppgaver. Du jobber i ditt eget tempo via et e-læringsprogram, med instruktør tilstede i rommet som hjelper deg om du står fast.   Kursinnhold:   Bli kjent med Outlook Elektronisk post Trygghet og sikkerhet Oppstart Mottak av meldinger Lesing av meldinger E-postkontoer Nyhetsstrømmer (RSS) Hjelpesystemet   Sending av meldinger Sending av meldinger Innskriving og redigering Signatur Meldingsformater Stavekontroll Vedlegg Viktighet og følsomhet Oppfølgingsflagg Svar og videresending Leverings- og lesebekreftelse Angi mottakere av svar Tidsbegrensning Svarknapper   Adresseboka Adresseboka Distribusjonslister   Organisering av meldinger Sortering av meldinger Søk etter meldinger Søkemapper Organisering av meldinger Aktivering av meldinger Søppelpost Regelhåndtering Farger Kategorier Fraværsassistenten   Kalenderen Navigering i kalenderen Planlegging av aktiviteter Arbeidsområde Svar på møteinnkallelser Påminnelse Redigering av aktiviteter Dele kalenderen med andre Oppgaver i kalenderen Utskrift av kalenderen Lagring som webside   Kontakter Kontakter Sending av kontaktinformasjon   Oppgaver Oppgaver Oppgaveforespørsler Svar på oppgaveforespørsler Planer i dag   Notater og logg Notater Visning av notater Logg   [-]
Les mer
2 dager 7 500 kr
Etter fullført kurs skal du beherske Photoshop, og kjenne til programmets muligheter og funksjoner. [+]
Dette er kurset for deg som har jobbet en del i Photoshop og er klar for å utnytte programmet kreative muligheter enda mer. Målet med Photoshop videregående kurs er at du skal lære å utnytte bruk av lag, kanaler, markering, masker og masker på farger og justeringer for å få kreative og effektfulle bilder. Dette kurset er for deg som har erfaring i Adobe Photoshop og er klar for å utnytte programmets mer kreative muligheter.  Effektiv bruk av lag, kanaler, markeringar och masker samt fargekorrigering for å lage effektfulle bilder. Kurset passer for kreatører, designere, markedsførere og fotografer. Etter fullført kurs skal du beherske Photoshop, og kjenne til programmets muligheter og funksjoner. Forhåndskunnskap: Kurset Photoshop innføring eller tilsvarende kunnskap. Kursinnhold:• Sette sammen flere bilder slik at de fremstår som nye bilder• Kreativ jobbing med lag• Automatisering av repeterende handlinger• Avansert bruk av fargekorrigering• Effektiv jobbing og snarveier• Bruk av tekst med Adobe Typekit• Spennende bruk av filtre og blande­modus [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excelkurs Basis - elæringskurs [+]
Excelkurs Basis - elæringskurs [-]
Les mer
Oslo 5 dager 27 500 kr
15 Sep
15 Sep
17 Nov
PL-500T00: Microsoft Power Automate RPA Developer [+]
PL-500: Microsoft Power Automate RPA Developer [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Autodesk 3ds Max er tilpasset arkitekter, ingeniører, designere og visualiseringseksperter, som leveres med en helt unik funksjonalitet for analyse av lysdistribusjon. [+]
Fleksible kurs for fremtiden Ny kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   3ds Max grunnkurs   Lag fotorealistiske presentasjoner av dine designløsninger! Her er et utvalg av temaene du vil lære på kurset: Grunnleggende funksjoner – Transformationer vha. move, rotate og scale Link til og import av DWG- og DXF-filer Lyssetning med standard lys Rendering med Scanline renderen og Mental Ray – Basics Editering av 2D- og 3D-geometri Dette kurset er tilpasset for arkitekter, ingeniører, designere og visualiseringseksperter, og gir en introduksjon til design og visualisering i 3ds MAX. Kurset vil gjøre deg i stand til å arbeide med lys, materialer og kamera i eksisterende 3D CAD/BIM-modeller.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Oslo 1 dag 9 500 kr
18 Aug
26 Sep
07 Nov
Develop dynamic reports with Microsoft Power BI [+]
Develop dynamic reports with Microsoft Power BI [-]
Les mer
13 timer
Videregående Excel [+]
I dette kurset forutsettes at deltagerne er vante Excelbrukere, slik at de behersker grunnleggende teknikker og henger med i gjennomgangen av mer videregående funksjonalitet. Mange av temaene vil være de samme som i det grunnleggende kurset, men vil kunne bli gjennomgått i mer avanserte eksempler. Sjekk av grunnleggende ting i formelbygging og formelkopiering Modellbyggingsteknikker – gjennomgående summering og tabulering av data med funksjonen INDIREKTE Tall og tekst – identifikasjon og korreksjon av «tekst»-tall Importutfordringer – rydde og ordne importerte datasett Datalister – bearbeiding og forberedelse til analyse Pivottabell – hvorfor og hvordan Power Pivot – en introduksjon Sentrale funksjoner: HVIS, HVISFEIL, FINN.RAD, m. fl. Grafisk fremstilling av numeriske data Arbeide med tid (dager, klokkeslett, etc.) i Excel Betingede sammendrag med bl.a. SUMMER.HVIS.SETT, matriseformler, etc. Makroer – en introduksjon [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Virtualisering med VMware. [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Øvinger: 8 av 12 må være godkjent. Personlig veileder: ja Vurderingsform: Praktisk hjemmeeksamen over 2 dager. Fra 09:00 til 15:00 dagen etter. Rapport leveres i itslearning. Ansvarlig: Stein Meisingseth Eksamensdato: 02.12.13 / 05.05.14         Læremål: Etter å ha gjennomført emnet Virtuelle Tjenere skal studenten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- ser fordeler, økonomiske og praktiske, ved å ta i bruk virtualiseringsteknologien til VMware- kjenner sentrale temaer innen drift av vSphere Infrastructure- forstår hvordan virtualisering er bygd opp FERDIGHETER:Kandidaten:- kan installere og konfigurere VMware vSphere- kan sette opp et cluster i vSphere vCenter- vise ut i fra rapporter gitt i vSphere Client om det trengs mer ressurser i opprettet cluster for dets kjørende virtuelle maskiner- forstår funksjonene vMotion, High Availability (HA) og Distributed Resource Scheduler (DRS)- kan automatisere enkle oppgaver ved bruk av PowerCLI script- kan utføre og- gjenopprette backup av virtuelle maskiner- kjenner til hvordan roller kan tildeles brukere GENERELL KOMPETANSE:Kandidaten:- har kompetanse til å besvare teoretiske problemstillinger innen virtualisering- har kompetanse til selvstendig både å ta i bruk sine kunnskaper og ferdigheter innen emnets tema i en driftssituasjon Innhold:Virtualisering med VMware.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Virtuelle Tjenere 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg   [-]
Les mer
Oslo Bergen 3 dager 27 900 kr
24 Sep
24 Sep
26 Nov
Architecting on AWS [+]
Architecting on AWS [-]
Les mer
Nettkurs 2 timer 1 990 kr
Dette webinaret fokuserer på bruk av eksisterende presentasjoner, endringer av disse, samt det å klargjøre for presentasjon. Vi viser deg en rekke tips og teknikker so... [+]
Dette webinaret fokuserer på bruk av eksisterende presentasjoner, endringer av disse, samt det å klargjøre for presentasjon. Vi viser deg en rekke tips og teknikker som bidrar til at presentasjonen ser strøken ut, og som hjelper deg å spare verdifull tid i forberedelsesfasen.  Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause.  Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Gjenbruk Sette inn lysbilder fra andre presentasjoner Tilbakestille lysbildeoppsett Endre mal Rydde opp i manuelle feil   Klargjøring Konvertere tekst til SmartArt Animasjon og lysbildeovergang Tilrettelegge for navigasjon (hyperkoblinger) Tilpasset fremvisning Lag lysbildefremvisning Ta med presentasjonen på minnepinne   3 gode grunner til å delta 1. Lær og gjenbruke innhold fra andre presentasjoner effektivt 2. Få oversikt over måter å "rydde opp" i en presentasjon 3. Få tips til praktiske verktøy til ferdigstilling av presentasjonen   [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Deltakerne lærer å håndtere lister på en rask og effektiv måte og vi ser også på noen av fordelene ved å gjøre en liste om til en tabell og når en ikke bør gjøre det. Ved... [+]
Kursinnhold Flash Fill Diagrammer Sparkline grafikk Hurtiganalyse Sortering og filtrering Avansert filter Delsammendrag Tabeller Målgruppe Deg som Jobber med lister i Excel Ønsker å effektivisere databehandlingen i Excel Vil ha en kjapp gjennomgang av disse elementene. Har grunnleggende kunnskaper i Excel og ønsker å lære mer. Forkunnskaper Har laget regneark Har kunnskaper tilsvarende «Ta kontroll over regnearket» Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Installasjon, konfigurering og bruk av epost-tjener og Outlook klient. Bruk av PowerShell for å drifte Exchange server. Installasjon, konfigurering og bruk av SQL-tjener.... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Kunnskaper om Windows server eller gode generelle nettverkskunnskaper eller tilsvarende. Innleveringer: 8 av 12 øvinger må være godkjent. Personlig veileder: ja Vurderingsform: 3 timers individuell skriftlig eksamen Ansvarlig: Jostein Lund Eksamensdato: 02.12.13 / 05.05.14         Læremål: KUNNSKAPER:Kandidaten:- har innsikt i drift av epost- og database-servere- kjenner til løsninger for å eksportere og importere data for epost- og database-servere FERDIGHETER:Kandidaten kan:- installere, konfigurere, drifte og sikre en Exchange epost-server- sette opp og distribuere Outlook til klienter- bruke PowerShell til å automatisere driftsoppgaver i Exchange- installere, konfigurere og drifte en SQL server GENERELL KOMPETANSE:Kandidaten har:- perspektiv og kompetanse i å velge riktige og tilpassete driftsløsninger- kompetanse i å formidle driftsterminologi, både muntlig og skriftlig Innhold:Installasjon, konfigurering og bruk av epost-tjener og Outlook klient. Bruk av PowerShell for å drifte Exchange server. Installasjon, konfigurering og bruk av SQL-tjener. Utveksling av data mellom løst sammenkoblede systemer. Finne, dele og publisere informasjon. Følgende programvare vil bli gjennomgått som supplement for å belyse den teoretiske gjennomgangen: Microsoft Exchange Server, Microsoft SharePoint Portal Server, Microsoft SQL Server. Nødvendig programvare kan fritt lastes ned.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Drift av MS Exchange og MS SQL Server 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.   [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer