IT-kurs
Du har valgt: IT kompetanse
Nullstill
Filter
Ferdig

-

38 treff i IT kompetanse
 

1 dag 9 500 kr
AI-050: Develop Generative AI Solutions with Azure OpenAI Service [+]
AI-050: Develop Generative AI Solutions with Azure OpenAI Service [-]
Les mer
Oslo 2 dager 16 900 kr
25 Sep
25 Sep
08 Jan
Modern Service Oriented Architecture [+]
Modern Service Oriented Architecture [-]
Les mer
1 dag 9 500 kr
06 Oct
24 Nov
AI-3002: Create document intelligence solutions with Azure AI Document Intelligence [+]
AI-3002: Create document intelligence solutions with Azure AI Document Intelligence [-]
Les mer
Oslo 5 dager 30 000 kr
22 Sep
22 Sep
17 Nov
AI-102: Designing and Implementing a Microsoft Azure AI Solution [+]
AI-102: Designing and Implementing a Microsoft Azure AI Solution [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 2 dager 16 900 kr
18 Sep
01 Dec
Modern Application Architecture [+]
Modern Application Architecture [-]
Les mer
Oslo 5 dager 40 000 kr
11 Aug
11 Aug
CEH: Certified Ethical Hacker v13 [+]
CEH: Certified Ethical Hacker v13 [-]
Les mer
Hol 5 dager 18 700 kr
27 Oct
09 Mar
Her lærer du hvordan du på en moderne måte kan skaffe deg kontroll og oversikt over tilstanden på maskiner og utstyr. Erstatter Prediktivt vedlikehold og digitalisering. [+]
Her lærer du hvordan du på en moderne måte kan skaffe deg kontroll og oversikt over tilstanden på maskiner og utstyr, finne kritiske måleparametere i komponenter og systemer, finne sammenhenger og definere KPIer, samt organisere dataene og lage dashboard. Skjematikk for å skisse opp et overvåkingssystem P&ID Tagge sensorer   Definere/lage hierarkier Datafangst Sensorer, typer og måleområder Dataoverføring OPC-UA og MQTT Lage og sette opp systemer for tilstandsovervåking Finne sammenhenger og strategisk viktige målepunkter i KRMs pumpe & ventilstasjon og hydraulikkanlegg Tegne opp forslag til tilstandsovervåking av hydraulikkanlegget Tegne opp forslag til tilstandsovervåking av pumpe & ventilstasjonen  Lage dashboards i Grafana for tilstandsovervåking av hydraulikkanlegget Lage dashboards i Grafana for tilstandsovervåking av pumpe & ventilstasjonen Avsluttende gruppeoppgave   Lage og sette opp et effektivt system for tilstandsovervåking   [-]
Les mer
1 dag 8 000 kr
This course introduces fundamentals concepts related to artificial intelligence (AI), and the services in Microsoft Azure that can be used to create AI solutions. [+]
COURSE OVERVIEW The course is not designed to teach students to become professional data scientists or software developers, but rather to build awareness of common AI workloads and the ability to identify Azure services to support them. The course is designed as a blended learning experience that combines instructor-led training with online materials on the Microsoft Learn platform (https://azure.com/learn). The hands-on exercises in the course are based on Learn modules, and students are encouraged to use the content on Learn as reference materials to reinforce what they learn in the class and to explore topics in more depth. TARGET AUDIENCE The Azure AI Fundamentals course is designed for anyone interested in learning about the types of solution artificial intelligence (AI) makes possible, and the services on Microsoft Azure that you can use to create them. You don’t need to have any experience of using Microsoft Azure before taking this course, but a basic level of familiarity with computer technology and the Internet is assumed. Some of the concepts covered in the course require a basic understanding of mathematics, such as the ability to interpret charts. The course includes hands-on activities that involve working with data and running code, so a knowledge of fundamental programming principles will be helpful. COURSE OBJECTIVES  After completing this course, you will be able to: Describe Artificial Intelligence workloads and considerations Describe fundamental principles of machine learning on Azure Describe features of computer vision workloads on Azure Describe features of Natural Language Processing (NLP) workloads on Azure Describe features of conversational AI workloads on Azure   COURSE CONTENT Module 1: Introduction to AI In this module, you'll learn about common uses of artificial intelligence (AI), and the different types of workload associated with AI. You'll then explore considerations and principles for responsible AI development. Artificial Intelligence in Azure Responsible AI After completing this module you will be able to Describe Artificial Intelligence workloads and considerations Module 2: Machine Learning Machine learning is the foundation for modern AI solutions. In this module, you'll learn about some fundamental machine learning concepts, and how to use the Azure Machine Learning service to create and publish machine learning models. Introduction to Machine Learning Azure Machine Learning After completing this module you will be able to Describe fundamental principles of machine learning on Azure Module 3: Computer Vision Computer vision is a the area of AI that deals with understanding the world visually, through images, video files, and cameras. In this module you'll explore multiple computer vision techniques and services. Computer Vision Concepts Computer Vision in Azure After completing this module you will be able to Describe features of computer vision workloads on Azure Module 4: Natural Language Processing This module describes scenarios for AI solutions that can process written and spoken language. You'll learn about Azure services that can be used to build solutions that analyze text, recognize and synthesize speech, translate between languages, and interpret commands. After completing this module you will be able to Describe features of Natural Language Processing (NLP) workloads on Azure Module 5: Conversational AI Conversational AI enables users to engage in a dialog with an AI agent, or *bot*, through communication channels such as email, webchat interfaces, social media, and others. This module describes some basic principles for working with bots and gives you an opportunity to create a bot that can respond intelligently to user questions. Conversational AI Concepts Conversational AI in Azure After completing this module you will be able to Describe features of conversational AI workloads on Azure   TEST CERTIFICATION Recommended as preparation for the following exams: Exam AI-900: Microsoft Azure AI Fundamentals. HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
7 timer 19 900 kr
Velkommen til et tredagers ML-Ops-kurs som er skapt for å lære deg erfaringsbaserte fremgangsmåter, bestepraksis og å oppdatere deg på siste nytt av brukbare verktøy. Lys... [+]
    Du lærer å designe og implementere ML-Ops som kan skape verdi i praksis Bli med på et intensivt kurs som tar deg dypt inn i ML-Ops og lærer deg å identifisere de beste områdene for implementering av teknologien. Over tre dager blir du introdusert for håndgripelige eksempler, mønsterpraksis og metodikk. Fokusområdene inkluderer dataadministrasjon, ML-Ops-arbeidsflyter, modellutrulling, modellomskolering, modellarkiv, monitorering og A/B-testing. Det vil si: Alt du trenger å vite, så du ikke skal finne opp ML-hjulet på nytt hver gang. Men kurset handler ikke bare om å lære deg tekniske ferdigheter. Det er laget for deg som vil bruke ML-Ops til å skape målbare forretningsverdier. For hvor mye nytte har du av en modell som aldri blir satt i produksjon? Du får også innsikt i hvor viktig god kommunikasjon er for ML-Ops. Når du har fullført kurset, vil du være i stand til å designe og rulle ut ende-til-ende ML-Ops-kommandokøer i virkelige prosjekter. Du vil være i stand til å skape brukbare arkitekturer som kan ta virksomheten din til nye høyder.    Dette får du med deg hjem: Dyp forståelse for håndtering og vedlikehold av ML gjennom en full livssyklus. Kjennskap til hvordan du gjennomfører en case-studie for å identifisere prosjekter med høy avkastning, lav implementasjonskompleksitet og begrenset risiko. Evnen til å sette ut maskinlæringsmodeller i faktisk produksjon. Forståelse for en ML-Ops-arbeidsflyt, og alle dens komponenter. Praktisk erfaring med ML-Ops-verktøy og -teknologier. Kunnskapen som trengs for å designe passende ML-Ops-arkitektur for prosjekter av ulik modenhetsgrad. En solid forståelse for viktigheten av samarbeid og kommunikasjon innen ML-Ops. Kjennskap til og kunnskap om ML-Ops-bestepraksis. En forståelse for «Model State»-, «Data Drift»- og «Model Drift»-monitorering. Kjennskap til A/B-testing med mål om å velge modellen som egner seg best. Kjennskap til «Shadow/Canary Mode»-utrulling og hvordan disse både kan brukes for å minimere risiko og for å bygge tillit til nye modeller. Forståelse for ulike teknikker når det gjelder modell-gjentrening. Evnen til å designe og implementere skalerbare, ende-til-ende ML-Ops-kommandokøer for reelle prosjekter.   Derfor skal du ta dette kurset: Brenner du etter å ta maskinlæringsferdighetene dine til neste nivå? Eller higer du etter å skape konkret forretningsverdi ved hjelp av ML-Ops? I 2019 rapporterte VentureBeat at så mye som 87 % av alle maskinlæringsmodeller aldri kommer så langt som til å bli satt i produksjon. Med andre ord: Det er bare drøye ti prosent av alle ML-modeller som faktisk kan brukes for å skape verdi!  Den største grunnen til at så få lykkes er at prosjektene ikke klarer å levere på forretningsmålene sine. De stiller feil spørsmål, og får feil svar. Som en direkte konsekvens av dette er kompetansen innen maskinlæring sterkt vektet mot prototyping, på bekostning av praktisk ML-Ops-erfaring.    Målet med dette kurset er å bygge en bro over dette gapet. Kurset gir deg kunnskapen til å sette modellene dine i produksjon – med høy suksessrate. Du kommer til å lære hvordan du skal identifisere prosjekter med høyt potensiale, lav kompleksitet og lav risiko. Med denne kunnskapen øker sannsynligheten for at du ikke bare vil levere på forretningsmålene dine, men at du kommer til å overlevere! Ikke kast bort tiden eller ekspertisen din – bli med på et kurs som gir deg innsikt i verktøyene og metodikken som bidrar til at du kan maksimere forretningsverdien i din organisasjon!   [-]
Les mer
4 dager 4 865 kr
På forespørsel
Modul Operate omhandler nettverk og relaterte kommunikasjonstjenester innen en IT-infrastruktur, samt vedlikehold og brukerproblemstillinger i forhold til tjenestetilbude... [+]
Kursinnhold• Hardwarekomponenter og arkitektur• Operativsystemer  • Kommunikasjon og nettverk• Nettverkstjenester• Trådløs og mobil databehandling• Nettverksadministrasjon• Service og support   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.   InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.   MålsetningModul Operate omhandler nettverk og relaterte kommunikasjonstjenester innen en IT- infrastruktur, samt vedlikehold og brukerproblemstillinger i forhold til tjenestetilbudet. Modulen krever at kandidaten skal kjenne til hardware komponenter, dataarkitekturer og forskjellige operativsystemer. Kandidaten skal også skille mellom ulike nivåer av kommunikasjonsprotokoller, og deres bruk i både kablede og trådløse nettverksteknologier. Dessuten skal kandidaten forstå Simple Network Management Protocol (SNMP), e-post og webtjenester, og de tilhørende sikkerhetstrusler og mottiltak. Kandidaten skal forstå betydningen av en klient-orientert tilnærming til IT-støtte, og kunne benytte noen av de grunnleggende prinsipper for IT-support.. [-]
Les mer
Virtuelt klasserom 2 dager 14 000 kr
In this course, the students will design various data platform technologies into solutions that are in line with business and technical requirements. This can include on-... [+]
The students will also explore how to design data security including data access, data policies and standards. They will also design Azure data solutions which includes the optimization, availability and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Data Platform Architecture Considerations. -Core Principles of Creating Architectures-Design with Security in Mind-Performance and Scalability-Design for availability and recoverability-Design for efficiency and operations-Case Study Module 2: Azure Batch Processing Reference Architectures. -Lambda architectures from a Batch Mode Perspective-Design an Enterprise BI solution in Azure-Automate enterprise BI solutions in Azure-Architect an Enterprise-grade Conversational Bot in Azure Module 3: Azure Real-Time Reference Architectures. -Lambda architectures for a Real-Time Perspective-Lambda architectures for a Real-Time Perspective-Design a stream processing pipeline with Azure Databricks-Create an Azure IoT reference architecture Module 4: Data Platform Security Design Considerations. -Defense in Depth Security Approach-Network Level Protection-Identity Protection-Encryption Usage-Advanced Threat Protection Module 5: Designing for Resiliency and Scale. -Design Backup and Restore strategies-Optimize Network Performance-Design for Optimized Storage and Database Performance-Design for Optimized Storage and Database Performance-Incorporate Disaster Recovery into Architectures-Design Backup and Restore strategies Module 6: Design for Efficiency and Operations. -Maximizing the Efficiency of your Cloud Environment-Use Monitoring and Analytics to Gain Operational Insights-Use Automation to Reduce Effort and Error [-]
Les mer
Bedriftsintern 1 dag 7 500 kr
Data science og maskinlæring er blitt en viktig drivkraft bak mange forretnings beslutninger. Men fortsatt er mange usikre på hva begrepene innebærer og hvilke muligheter... [+]
Dette kurset tilbys som bedriftsinternt kurs   Maskinlæring handler om sette datamaskiner i stand til å lære fra og utvikle atferd basert på data. Det vil si at en datamaskin kan løse en oppgave den ikke er eksplisitt programmert for å håndtere. I stedet er den i stand til å automatisk lære gjenkjenning av komplekse mønstre i data og gjøre beslutninger basert på dette disse. Maskinlæring gir store muligheter, men mange bedrifter har problemer med å ta teknologien i bruk. Nøyaktig hvilke oppgaver kan maskinlæring utføre, og hvordan kommer man i gang? Dette kurset gir oversikt over mulighetene som ligger i maskinlæring, og hvordan i tillegg til kunnskap om hvordan teknologien kan løse oppgaver og skape resultater i praksis. Hva er maskinlæring, datavitenskap og kunstig intelligens og hvordan det er relatert til statistikk og dataanalyse? Hvordan å utvinne kunnskap fra dataene dine? Hva betyr Big data og hvordan analyseres det? Hvor og hvordan skal du bruke maskinlæring til dine daglige forretningsproblemer? Hvordan bruke datamønstre til å ta avgjørelser og spådommer med eksempler fra den virkelige verden? Hvilke typer forretningsproblemer kan en maskinen lære å håndtere Muligheter som maskinlæring gir din bedrift Hva er de teoretiske aspekter på metoder innen maskinlæring? Hvilke ML-metoder som er relevante for ulike problemstillinger innen dataanalyse? Hvordan evaluere styrker og svakheter mellom disse algoritmene og velge den beste? Anvendt data science og konkrete kunde eksempler i praksis   Målsetning Kurset gir kunnskap om hvordan maskinlæring kan løse et bestemt problem og hvilke metoder som egner seg i en gitt situasjon. Du blir i stand til å kan skaffe deg innsikt i data, og vil kunne identifisere egenskapene som representerer dem best. Du kjenner de viktigste maskinlæringsalgoritmene og hvilke metoder som evaluerer ytelsen deres best. Dette gir grunnlag for kontinuerlig forbedring av løsninger basert på maskinlæring.   [-]
Les mer
Virtuelt klasserom 4 dager 24 500 kr
This course teaches Solutions Architects how to translate business requirements into secure, scalable, and reliable solutions. Lessons include design considerations relat... [+]
Recommend solutions to minimize costs Recommend a solution for Conditional Access, including multi-factor authentication Recommend a solution for a hybrid identity including Azure AD Connect and Azure AD Connect Recommend a solution for using Azure Policy Recommend a solution that includes KeyVault Recommend a solution that includes Azure AD Managed Identities Recommend a storage access solution Design and Azure Site Recovery solution Recommend a solution for autoscaling Recommend a solution for containers Recommend a solution for network security Recommend a solution for migrating applications and VMs Recommend a solution for migration of databases  Agenda Module 1: Design for Cost Optimization -Recommend Solutions for Cost Management-Recommended Viewpoints for Minimizing Costs Module 2: Design a Solution for Logging and Monitoring -Azure Monitoring Services-Azure Monitor Module 3: Design Authentication -Recommend a Solution for Multi-Factor Authentication-Recommend a Solution for Single-Sign On (SSO)-Five Steps for Securing Identity Infrastructure-Recommend a Solution for a Hybrid Identity-Recommend a Solution for B2B Integration Module 4: Design Authorization -Infrastructure Protection-Recommend a Hierarchical Structure for Management Groups, Subscriptions and Resource Groups Module 5: Design Governance -Recommend a Solution for using Azure Policy-Recommend a Solution for using Azure Blueprint Module 6: Design Security for Applications -Recommend a Solution using KeyVault-Recommend a Solution using Azure AD Managed Identities Module 7: Design a Solution for Databases Select an Appropriate Data Platform Based on RequirementsOverview of Azure Data StorageRecommend Database Service Tier SizingDynamically Scale Azure SQL Database and Azure SQL Managed InstancesRecommend a Solution for Encrypting Data at Rest, Transmission, and In Use Module 8: Design Data Integration -Recommend a Data Flow-Recommend a Solution for Data Integration Module 9: Select an Appropriate Storage Account -Understanding Storage Tiers-Recommend a Storage Access Solution-Recommend Storage Management Tools Module 10: Design a Solution for Backup and Recovery -Recommend a Recovery Solution for Hybrid and On-Premises Workloads-Design and Azure Site Recovery Solution-Recommend a Solution for Recovery in Different Regions-Recommend a Solution for Azure Backup Management-Design a Solution for Data Archiving and Retention Module 11: Design for High Availability -Recommend a Solution for Application and Workload Redundancy-Recommend a Solution for Autoscaling-Identify Resources that Require High Availability-Identify Storage Tpes for High Availability-Recommend a Solution for Geo-Redundancy of Workloads Module 12: Design a Compute Solution -Recommend a Solution for Compute Provisioning-Determine Appropriate Compute Technologies-Recommend a Solution for Containers-Recommend a Solution for Automating Compute Management Module 13: Design a Network Solution -Recommend a Solution for Network Addressing and Name Resolution-Recommend a Solution for Network Provisioning-Recommend a Solution for Network Security-Recommend a Solution for iInternete Connectivity and On-Premises Networks,-Recommend a Solution for Automating Network Management-Recommend a Solution for Load Balancing and Rraffic Routing Module 14: Design an Application Architecture -Recommend a Microservices Architecture-Recommend an Orchestration Solution for Deployment of Applications-Recommend a Solution for API Integration Module 15: Design Migrations -Assess and On-Premises Servers and Applications for Migration-Recommend a Solution for Migrating Applications and VMs-Recommend a Solution for Migration of Databases [-]
Les mer
6 dager 7 525 kr
På forespørsel
Modul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon [+]
Kursinnhold     * Organisasjoner og bruk av IT    * IT- ledelse                     * Verdsettelse av IT    * Den globale nettverksøkonomien    * Prosjektledelse    * Samarbeid og kommunikasjon    * Juridiske og etiske problemstillinger   UndervisningsformKlasseromsundervisning med prosjektor hvor deltakerne får tildelt PC med nødvendig programvare installert. Praktisk trening med øvingsoppgaver for å aktivisere kunnskapen.     InstruktørerVi har erfarne instruktørene med høy kompetanse, lang erfaring og dyktige pedagogiske evner.     MålsetningModul Plan, ser på organisasjoner og deres bruk av IT, både som en tilrettelegger for effektive informasjonsystemer, og som en plattform for innovasjon. Modulen krever at kandidaten skal ha en grundig forståelse av organisasjoner, deres strategier og forretningsprosesser, samt de globale trender og muligheter som er involvert. Kandidaten skal kjenne igjen de viktigste problemstillinger knyttet til styringen av IT, som for eksempel å velge riktig teknologi, eller å velge mellom utvikling av interne systemer eller outsourcing. Kandidaten skal også kunne begrunne IT-investeringer og få kjennskap til noen av de juridiske og etiske aspekter ved bruken av IT.   Kandidaten skal bli oppmerksom på kravet om en profesjonell tilnærming til prosjektledelse og kvalitetsikring. Kandidaten skal også forstå betydningen av teambygging og effektivt kommunikasjon når man presenterer sin analyse eller beslutning for organisasjonen.   [-]
Les mer