IT-kurs
Kurs i programvare og applikasjoner
Oslo
Du har valgt: Østensjø
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Østensjø ) i Kurs i programvare og applikasjoner
 

Virtuelt klasserom 2 dager 8 900 kr
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan ... [+]
Kursinstruktør   Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer. Kursinstruktør   Jonny Austad Jonny Austad er utdannet som Adjunkt og har jobbet som lærer og instruktør siden 1989. Han har dessuten jobbet mye med support og drifting av nettverk og vet som oftest hva som er vanlige problemer ute i bedriftene. Han var den første Datakort-læreren i landet (høsten 1997), og har Office-pakken med spesielt Excel som sitt hjertebarn. Jonny er en meget hyggelig og utadvendt person som elsker å undervise med smarte løsninger på problemer samt vise smarte tips og triks i de ulike programmene. Kursinnhold Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Bruk av stiler gir profesjonelle og flotte dokumenter. Lær å lage innholdsfortegnelse, stikkordliste og figurliste automatisk. Profesjonelt sideoppsett med spalter, marger, sidefarger, sidekantlinjer og dokumenttemaer. Auto korrektur, byggeblokker, egenskaper og felt gjør det enklere å gjenbruke tekst. Flere deldokumenter kan samles i et hoved dokument ved hjelp av hoveddokumentvisning. I lange dokumenter kan du ha uliketopp- og bunntekster og selv bestemme side nummerering. For å friske opp et dokument kan du sette inn utklipp, figurer, SmartArt og diagram. Med tekstbokser kan du presentere sitater eller sammendrag fra dokumentet. Tabeller kan brukes til å presentere informasjon på en oversiktlig måte men kan også sorteres og inneholde beregninger. Maler brukes for å sikre at dokumenter av samme type får en ensartet formatering. Felt, innholdskontroller og skjemakontroller kan settes inn for å effektivisere bruken av maler. Med makroer kan du effektivisere avanserte oppgaver som består av serie med handlinger. Med fletting kan du masseprodusere brev, konvolutter, etiketter og e-post. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Word erfaring som de gjerne deler med deg! Meld deg på Word-kurs allerede i dag og sikre deg plass! Lær deg: behandling av stiler rask og enkel opprettelse av innholdsfortegnelse sette inn forsider samarbeid om felles dokument spalter beregninger i tabeller innsetting av diagram sett inn bilder og bildetekst grafikk og tegning maler og skjema bruk av makroer integrasjon med Excel og andre programmer [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Oslo 5 dager 30 500 kr
18 Aug
18 Aug
Oracle Database 23ai: Introduction to SQL Workshop [+]
Oracle Database: Introduction to SQL [-]
Les mer
Majorstuen 2 dager 7 900 kr
21 Aug
17 Sep
29 Oct
På dette kurset får du en god oversikt over mulighetene i Excel. Du får nyttige tips som forenkler arbeidshverdagen din, og lærer de viktigste funksjonene for å komme i g... [+]
Bruker du mye tid i Excel på å få gjort enkle arbeidsoppgaver? Kommer det til stadighet prosent og dato i celler hvor du vil ha vanlige tall? Blir en formel ødelagt når du flytter den? Er det vanskelig å lage det diagrammet du ønsker? Blir ikke utskriftene dine slik du ønsker? Dette er vanlige problemstillinger mange sliter med og som blir borte etter endt kurs! På kun 2 dager vil du mestre de vanligste formler og funksjoner du trenger i din arbeidsdag. Du lærer gode rutiner og hurtigtastene du trenger for å kunne arbeide raskt og effektivt. Du vil kunne bygge alt fra enkle til mer avanserte modeller og vil føle deg trygg på at modellen din virker og gir rett resultat. Du vil også få en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert!   Kursholderne har mer enn 20 års Excel erfaring som de gjerne deler med deg!   Kurset passer for deg med liten erfaring og som ønsker å lære Excel fra grunnen av. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Meld deg på Excel-kurs allerede i dag og sikre deg plass!   Krav til forkunnskaper Grunnleggende kunnskaper i Windows.   Kursinnhold Redigering Merking Sletting Angre muligheter Flytting og kopiering Innsetting og sletting Formler Bruk av formler Autofyll Cellereferanser Formatering Hva er formatering? Kolonnebredde og radhøyde Tallformatering Skriftformatering Justering av celleinnhold Kantlinjer og fyllfarger Betinget formatering Funksjoner Bruk av funksjoner Summering Minst, størst, antall og gjennomsnitt Hvis-funksjonen Betinget summering Diagram Utforming av diagram Diagramtyper Flere regneark Arbeid med regneark Innsetting og sletting av regneark Flytting og kopiering av regneark Referering til andre regneark Enkle formler på tvers av ark Vindus håndtering Lister og tabeller Sortering Tabeller Filtrering Deling og frysing av vindu   [-]
Les mer
Oslo 5 dager 27 500 kr
15 Sep
15 Sep
17 Nov
PL-500T00: Microsoft Power Automate RPA Developer [+]
PL-500: Microsoft Power Automate RPA Developer [-]
Les mer
1 dag 7 600 kr
Med Power Automate kan du automatisere forretningsprosesser og handlinger på tvers av organisasjonen, med lite eller ingen koding. Ta farvel med kjedelige, repetitive opp... [+]
Med Power Automate kan du automatisere forretningsprosesser og handlinger på tvers av organisasjonen, med lite eller ingen koding. Ta farvel med kjedelige, repetitive oppgaver og effektiviser hverdagen. Ikke minst er Power Automate ofte en del av Microsoft 365 lisensen du kanskje allerede har. Power Automate er Microsoft sin løsning for automatisering av prosesser, og er en tjeneste som lar deg utvikle flyter på tvers av en rekke applikasjoner og tjenester med lite eller ingen koding. Du kan selvfølgelig få tjenestene i Microsoft 365 til å snakke sammen slik du vil, men det finnes også flere hundre koblinger til andre eksterne tjenester. I tillegg har du naturligvis mulighet til å benytte generelle tilkoblinger, for å hente data fra egne APIer, databaser og tjenester. Power Automate gir muligheter til brukere på tvers av organisasjonen som tidligere i stor grad har vært forbeholdt utviklere.  I løpet av kurset vil deltagere få en hands-on opplevelse av hva Power Automate er, hva det kan brukes til, og hvordan en kan jobbe med det. Kursholderen vil gjøre deltakerne godt kjent med terminologien, demonstrere løsninger og utfordre med øvelser.  Dette er et introduksjonskurs, så det er naturligvis mye vi ikke vil rekke å gå gjennom. Kursleder vil peke deltagerne til gode kilder for videre læring. Det er også mulig å be om bedriftsinterne kurs på videregående nivå, der man kan spesifisere ønsket fokus og spesifikke behov. Disse kan også kjøres som workshops.   TA MED EGEN PC   Kursinnhold Power Automate - det store bildet Ulike flyttyper Bli kjent med arbeidsflaten Datakilder og koblinger Beste praksis for navngivning, utvikling, dokumentering m.m. Bruksområder og viktige begrensninger   [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Vi utforsker mulighetene med diagrammer i Excel, går gjennom de mest brukte diagramvariantene og utforsker mulighetene. Vi tar også en kort innføring i pivottabeller slik... [+]
Kursinnhold Hva slags data kan brukes som grunnlag for et diagram Stolpediagram Sektordiagram Kombinert diagram Formatering av diagrammer Tips og triks Smarte løsninger Sparkline Hurtiganalyse Bruk av Excels diagrammer i andre Office-programmer [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
1 dag 9 500 kr
18 Aug
26 Sep
07 Nov
Develop dynamic reports with Microsoft Power BI [+]
Develop dynamic reports with Microsoft Power BI [-]
Les mer
2 dager 7 500 kr
Etter fullført kurs skal du beherske Photoshop, og kjenne til programmets muligheter og funksjoner. [+]
Dette er kurset for deg som har jobbet en del i Photoshop og er klar for å utnytte programmet kreative muligheter enda mer. Målet med Photoshop videregående kurs er at du skal lære å utnytte bruk av lag, kanaler, markering, masker og masker på farger og justeringer for å få kreative og effektfulle bilder. Dette kurset er for deg som har erfaring i Adobe Photoshop og er klar for å utnytte programmets mer kreative muligheter.  Effektiv bruk av lag, kanaler, markeringar och masker samt fargekorrigering for å lage effektfulle bilder. Kurset passer for kreatører, designere, markedsførere og fotografer. Etter fullført kurs skal du beherske Photoshop, og kjenne til programmets muligheter og funksjoner. Forhåndskunnskap: Kurset Photoshop innføring eller tilsvarende kunnskap. Kursinnhold:• Sette sammen flere bilder slik at de fremstår som nye bilder• Kreativ jobbing med lag• Automatisering av repeterende handlinger• Avansert bruk av fargekorrigering• Effektiv jobbing og snarveier• Bruk av tekst med Adobe Typekit• Spennende bruk av filtre og blande­modus [-]
Les mer
Oslo 5 dager 46 000 kr
01 Sep
01 Sep
01 Dec
SFWIPF: Fundamentals of Cisco Firewall Threat Defense and Intrusion Prevention [+]
SFWIPF: Fundamentals of Cisco Firewall Threat Defense and Intrusion Prevention [-]
Les mer
Nettkurs 2 190 kr
På dette kurset ser vi på hvordan man kan lage egne tittelfelt, hvordan informasjonen vi legger inn i partene kan hentes i tittelfelt og stykkliste. Jo mer man kan automa... [+]
Bruker du den vanlige Inventor-malfilen.idw fortsatt, så trenger du kanskje å gjøre den til din egen. Vil du ha A-A (1:20) plassert fast under et view, istedenfor å alltid flytte den under manuelt? Vil du ha lagt til faste skaleringer, eller holder det med de få som ligger i templaten?Er det tykk linjetykkelse i tittelfelt-rammen?Får du Style Conflict- warning hver gang du starter en ny template?Endrer du alltid noe manuelt i tegningen? Du vil få svar på alle disse spørsmålene i dette kurset!   HOVEDPUNKTER: lage eget tittelfelt sette inn logo i tittelfeltet opprette nytt material-bibliotek, og lage nye materialer lage Custom Properties i part, og få dem inn i stykkliste unngå å få Style Conflict-advarselen hver gang du oppretter en ny fil bli kjent med Styles Editor lagre endringer i Styles, dvs endringer i stykkliste, linjetykkelser, stykk-lister, dimensjoner, farger osv. litt om Project-oppsett [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This course will teach you how to containerize workloads in Docker containers, deploy them to Kubernetes clusters provided by Google Kubernetes Engine, and scale those wo... [+]
Objectives Understand how software containers work Understand the architecture of Kubernetes Understand the architecture of Google Cloud Understand how pod networking works in Google Kubernetes Engine Create and manage Kubernetes Engine clusters using the Google Cloud Console and gcloud/kubectl commands   Course Outline Module 1: Introduction to Google Cloud -Use the Google Cloud Console-Use Cloud Shell-Define Cloud Computing-Identify Google Cloud compute services-Understand Regions and Zones-Understand the Cloud Resource Hierarchy-Administer your Google Cloud Resources Module 2: Containers and Kubernetes in Google Cloud -Create a Container Using Cloud Build-Store a Container in Container Registry-Understand the Relationship Between Kubernetes and Google Kubernetes Engine (GKE)-Understand how to Choose Among Google Cloud Compute Platforms Module 3: Kubernetes Architecture -Understand the Architecture of Kubernetes: Pods, Namespaces-Understand the Control-plane Components of Kubernetes-Create Container Images using Cloud Build-Store Container Images in Container Registry-Create a Kubernetes Engine Cluster Module 4: Introduction to Kubernetes Workloads -The kubectl Command-Introduction to Deployments-Pod Networking-Volumes Overview [-]
Les mer
Oslo 5 dager 46 000 kr
21 Jul
08 Sep
10 Nov
https://www.glasspaper.no/kurs/sise-implementing-and-configuring-cisco-identity-services-engine/ [+]
SISE: Implementing and Configuring Cisco Identity Services Engine [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
15 Sep
27 Oct
08 Dec
Analyserer du store datamengder? Gjør du samme import hver dag/uke/måned? Importerer du data til Excel som ikke alltid har rett format? Har du lurt på hvordan det nye ver... [+]
Kursinnhold Import av .csv Import av tekstfiler (.txt) Import fra internett Transformering av data Rette opp feil Lage beregnede kolonner Regelmessig import Analyse av store datamengder   Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder.   [-]
Les mer