Alle kategorier
Du har valgt: IT-kurs
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i IT-kurs
 

Klasserom + nettkurs 4 dager 21 000 kr
This course teaches IT Professionals how to manage core Windows Server workloads and services using on-premises, hybrid, and cloud technologies. [+]
COURSE OVERVIEW The course teaches IT Professionals how to implement and manage on-premises and hybrid solutions such as identity, management, compute, networking, and storage in a Windows Server hybrid environment. TARGET AUDIENCE This four-day course is intended for Windows Server Hybrid Administrators who have experience working with Windows Server and want to extend the capabilities of their on-premises environments by combining on-premises and hybrid technologies. Windows Server Hybrid Administrators implement and manage on-premises and hybrid solutions such as identity, management, compute, networking, and storage in a Windows Server hybrid environment. COURSE OBJECTIVES After you complete this course you will be able to: Use administrative techniques and tools in Windows Server. Identify tools used to implement hybrid solutions, including Windows Admin Center and PowerShell. Implement identity services in Windows Server. Implement identity in hybrid scenarios, including Azure AD DS on Azure IaaS and managed AD DS. Integrate Azure AD DS with Azure AD. Manage network infrastructure services. Deploy Azure VMs running Windows Server, and configure networking and storage. Administer and manage Windows Server IaaS Virtual Machine remotely. Manage and maintain Azure VMs running Windows Server. Configure file servers and storage. Implement File Services in hybrid scenarios, using Azure Files and Azure File Sync. COURSE CONTENT Module 1: Identity services in Windows Server This module introduces identity services and describes Active Directory Domain Services (AD DS) in a Windows Server environment. The module describes how to deploy domain controllers in AD DS, as well as Azure Active Directory (AD) and the benefits of integrating Azure AD with AD DS. The module also covers Group Policy basics and how to configure group policy objects (GPOs) in a domain environment. Lessons for module 1 Introduction to AD DS Manage AD DS domain controllers and FSMO roles Implement Group Policy Objects Manage advanced features of AD DS Lab : Implementing identity services and Group Policy Deploying a new domain controller on Server Core Configuring Group Policy After completing module 1, students will be able to: Describe AD DS in a Windows Server environment. Deploy domain controllers in AD DS. Describe Azure AD and benefits of integrating Azure AD with AD DS. Explain Group Policy basics and configure GPOs in a domain environment. Module 2: Implementing identity in hybrid scenarios This module discusses how to configure an Azure environment so that Windows IaaS workloads requiring Active Directory are supported. The module also covers integration of on-premises Active Directory Domain Services (AD DS) environment into Azure. Finally, the module explains how to extend an existing Active Directory environment into Azure by placing IaaS VMs configured as domain controllers onto a specially configured Azure virtual network (VNet) subnet. Lessons for module 2 Implement hybrid identity with Windows Server Deploy and manage Azure IaaS Active Directory domain controllers in Azure Lab : Implementing integration between AD DS and Azure AD Preparing Azure AD for AD DS integration Preparing on-premises AD DS for Azure AD integration Downloading, installing, and configuring Azure AD Connect Verifying integration between AD DS and Azure AD Implementing Azure AD integration features in AD DS After completing module 2, students will be able to: Integrate on-premises Active Directory Domain Services (AD DS) environment into Azure. Install and configure directory synchronization using Azure AD Connect. Implement and configure Azure AD DS. Implement Seamless Single Sign-on (SSO). Implement and configure Azure AD DS. Install a new AD DS forest on an Azure VNet. Module 3: Windows Server administration This module describes how to implement the principle of least privilege through Privileged Access Workstation (PAW) and Just Enough Administration (JEA). The module also highlights several common Windows Server administration tools, such as Windows Admin Center, Server Manager, and PowerShell. This module also describes the post-installation confguration process and tools available to use for this process, such as sconfig and Desired State Configuration (DSC). Lessons for module 3 Perform Windows Server secure administration Describe Windows Server administration tools Perform post-installation configuration of Windows Server Just Enough Administration in Windows Server Lab : Managing Windows Server Implementing and using remote server administration After completing module 3, students will be able to: Explain least privilege administrative models. Decide when to use privileged access workstations. Select the most appropriate Windows Server administration tool for a given situation. Apply different methods to perform post-installation configuration of Windows Server. Constrain privileged administrative operations by using Just Enough Administration (JEA). Module 4: Facilitating hybrid management This module covers tools that facilitate managing Windows IaaS VMs remotely. The module also covers how to use Azure Arc with on-premises server instances, how to deploy Azure policies with Azure Arc, and how to use role-based access control (RBAC) to restrict access to Log Analytics data. Lessons for module 4 Administer and manage Windows Server IaaS virtual machines remotely Manage hybrid workloads with Azure Arc Lab : Using Windows Admin Center in hybrid scenarios Provisioning Azure VMs running Windows Server Implementing hybrid connectivity by using the Azure Network Adapter Deploying Windows Admin Center gateway in Azure Verifying functionality of the Windows Admin Center gateway in Azure After completing module 4, students will be able to: Select appropriate tools and techniques to manage Windows IaaS VMs remotely. Explain how to onboard on-premises Windows Server instances in Azure Arc. Connect hybrid machines to Azure from the Azure portal. Use Azure Arc to manage devices. Restrict access using RBAC. Module 5: Hyper-V virtualization in Windows Server This modules describes how to implement and configure Hyper-V VMs and containers. The module covers key features of Hyper-V in Windows Server, describes VM settings, and how to configure VMs in Hyper-V. The module also covers security technologies used with virtualization, such as shielded VMs, Host Guardian Service, admin-trusted and TPM-trusted attestation, and Key Protection Service (KPS). Finally, this module covers how to run containers and container workloads, and how to orchestrate container workloads on Windows Server using Kubernetes. Lessons for module 5 Configure and manage Hyper-V Configure and manage Hyper-V virtual machines Secure Hyper-V workloads Run containers on Windows Server Orchestrate containers on Windows Server using Kubernetes Lab : Implementing and configuring virtualization in Windows Server Creating and configuring VMs Installing and configuring containers After completing module 5, students will be able to: Install and configure Hyper-V on Windows Server. Configure and manage Hyper-V virtual machines. Use Host Guardian Service to protect virtual machines. Create and deploy shielded virtual machines. Configure and manage container workloads. Orchestrate container workloads using a Kubernetes cluster. Module 6: Deploying and configuring Azure VMs This module describes Azure compute and storage in relation to Azure VMs, and how to deploy Azure VMs by using the Azure portal, Azure CLI, or templates. The module also explains how to create new VMs from generalized images and use Azure Image Builder templates to create and manage images in Azure. Finally, this module describes how to deploy Desired State Configuration (DSC) extensions, implement those extensions to remediate noncompliant servers, and use custom script extensions. Lessons for module 6 Plan and deploy Windows Server IaaS virtual machines Customize Windows Server IaaS virtual machine images Automate the configuration of Windows Server IaaS virtual machines Lab : Deploying and configuring Windows Server on Azure VMs Authoring Azure Resource Manager (ARM) templates for Azure VM deployment Modifying ARM templates to include VM extension-based configuration Deploying Azure VMs running Windows Server by using ARM templates Configuring administrative access to Azure VMs running Windows Server Configuring Windows Server security in Azure VMs After completing module 6, students will be able to: Create a VM from the Azure portal and from Azure Cloud Shell. Deploy Azure VMs by using templates. Automate the configuration of Windows Server IaaS VMs. Detect and remediate noncompliant servers. Create new VMs from generalized images. Use Azure Image Builder templates to create and manage images in Azure. Module 7: Network infrastructure services in Windows Server This module describes how to implement core network infrastructure services in Windows Server, such as DHCP and DNS. This module also covers how to implement IP address managment and how to use Remote Access Services. Lessons for module 7 Deploy and manage DHCP Implement Windows Server DNS Implement IP address management Implement remote access Lab : Implementing and configuring network infrastructure services in Windows Server Deploying and configuring DHCP Deploying and configuring DNS After completing module 7, students will be able to: Implement automatic IP configuration with DHCP in Windows Server. Deploy and configure name resolution with Windows Server DNS. Implement IPAM to manage an organization’s DHCP and DNS servers, and IP address space. Select, use, and manage remote access components. Implement Web Application Proxy (WAP) as a reverse proxy for internal web applications. Module 8: Implementing hybrid networking infrastructure This module describes how to connect an on-premises environment to Azure and how to configure DNS for Windows Server IaaS virtual machines. The module covers how to choose the appropriate DNS solution for your organization’s needs, and run a DNS server in a Windows Server Azure IaaS VM. Finally, this module covers how to manage manage Microsoft Azure virtual networks (VNets) and IP address configuration for Windows Server infrastructure as a service (IaaS) virtual machines. Lessons for module 8 Implement hybrid network infrastructure Implement DNS for Windows Server IaaS VMs Implement Windows Server IaaS VM IP addressing and routing Lab : Implementing Windows Server IaaS VM networking Implementing virtual network routing in Azure Implementing DNS name resolution in Azure After completing module 8, students will be able to: Implement an Azure virtual private network (VPN). Configure DNS for Windows Server IaaS VMs. Run a DNS server in a Windows Server Azure IaaS VM. Create a route-based VPN gateway using the Azure portal. Implement Azure ExpressRoute. Implement an Azure wide area network (WAN). Manage Microsoft Azure virtual networks (VNets). Manage IP address configuration for Windows Server IaaS virtual machines (VMs). Module 9: File servers and storage management in Windows Server This module covers the core functionality and use cases of file server and storage management technologies in Windows Server. The module discusses how to configure and manage the Windows File Server role, and how to use Storage Spaces and Storage Spaces Direct. This module also covers replication of volumes between servers or clusters using Storage Replica. Lessons for module 9 Manage Windows Server file servers Implement Storage Spaces and Storage Spaces Direct Implement Windows Server Data Deduplication Implement Windows Server iSCSI Implement Windows Server Storage Replica Lab : Implementing storage solutions in Windows Server Implementing Data Deduplication Configuring iSCSI storage Configuring redundant Storage Spaces Implementing Storage Spaces Direct After completing module 9, students will be able to: Configure and manage the Windows Server File Server role. Protect data from drive failures using Storage Spaces. Increase scalability and performance of storage management using Storage Spaces Direct. Optimize disk utilization using Data DeDuplication. Configure high availability for iSCSI. Enable replication of volumes between clusters using Storage Replica. Use Storage Replica to provide resiliency for data hosted on Windows Servers volumes. Module 10: Implementing a hybrid file server infrastructure This module introduces Azure file services and how to configure connectivity to Azure Files. The module also covers how to deploy and implement Azure File Sync to cache Azure file shares on an on-premises Windows Server file server. This module also describes how to manage cloud tiering and how to migrate from DFSR to Azure File Sync. Lessons for module 10 Overview of Azure file services Implementing Azure File Sync Lab : Implementing Azure File Sync Implementing DFS Replication in your on-premises environment Creating and configuring a sync group Replacing DFS Replication with File Sync–based replication Verifying replication and enabling cloud tiering Troubleshooting replication issues After completing module 10, students will be able to: Configure Azure file services. Configure connectivity to Azure file services. Implement Azure File Sync. Deploy Azure File Sync Manage cloud tiering. Migrate from DFSR to Azure File Sync.   [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 27 500 kr
15 Sep
15 Sep
27 Oct
AZ-400: Designing and Implementing Microsoft DevOps solutions [+]
AZ-400: Designing and Implementing Microsoft DevOps solutions [-]
Les mer
Virtuelt klasserom 3 dager 15 900 kr
This course provides IT leaders, practitioners, support staff and staff interfacing with the organisation’s digital and information systems functions with a practical und... [+]
COURSE OVERVIEW . It also prepares delegates for the ITIL Foundation Certificate Examination. The course is based on the ITIL4 best practice service value system featured in the latest 2019 guidelines. TARGET AUDIENCE This course is aimed at all levels of IT professional and those involved in designing, building, delivering and managing modern digital products and services. COURSE OBJECTIVES After you complete this course you will be able to: Key IT service management concepts. How ITIL guiding principles can help and organization to adopt and adapt service management. The 4 dimensions of service management. The purpose and components of the service value system. The activities of the service value chain and how the interconnect. Know the purpose of key ITIL practices. Sit the ITIL4 foundation examination - Sample papers are set during the class by instructors to take during the class or as homework exercises. COURSE CONTENT IT Service Management definitions; Service, Utility, Warranty, Customer, User, Service management, Sponsor Key concepts of value creation Key concepts of service relationships; service offering; service provision; service consumption; service relationship management The nature, use and interaction of 7 ITIL guiding principles; Focus on value; Start where you are; Progress iteratively with feedback; Collaborate and promote visibility; Think and work holistically; Keep it simple and practical; Optimize and automate The 4 dimensions of service management; Organizations and people; Information and technology; Partners and suppliers; Value streams and processes    The ITIL service value system The service value chain, its inputs and outputs, and its role in supporting value streams Service value chain elements; Plan, Improve, Engage, Design & transition, Obtain / Build, Deliver & support Detail of how the following ITIL practices support the service value chain: -  Continual Improvement (including continual improvement model); Change control; Incident management; Problem Management; Service request management;  Service desk; Service level management The purpose of the following ITIL practices: - Information security management; Relationship management; Supplier management; Availability management; Capacity and performance management; Service configuration management;    IT asset management; Business analysis; Service continuity management; Deployment management; Monitoring and event management; Release management   TEST CERTIFICATION Recommended preparation for exam(s): ITIL4 Foundation Certificate in IT Service Management This is a pre-requisite for other ITIL4 qualifications. The examination is a 1 hour, closed book, multiple choice paper of 40 questions taken after completion of the course - exam vouchers are provided with this course. These will have a validity of 12 months. You will need to schedule your exams within this time frame. The pass mark is 65% (26 out of 40) Cost of the exam is included in the course fee [-]
Les mer
5 dager 45 000 kr
01 Sep
29 Sep
13 Oct
RH294: Red Hat System Administration III: Linux Automation with Ansible [+]
RH294: Red Hat System Administration III: Linux Automation with Ansible [-]
Les mer
Oslo 3 dager 20 000 kr
27 Oct
27 Oct
15 Dec
AZ-700: Designing and Implementing Microsoft Azure Networking Solutions [+]
AZ-700: Designing and Implementing Microsoft Azure Networking Solutions [-]
Les mer
Oslo 5 dager 27 500 kr
20 Oct
20 Oct
24 Nov
MS-102: Microsoft 365 Administrator Essentials [+]
MS-102: Microsoft 365 Administrator [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Fysiske medier i bruk i lokalnettverk. Nettverkskomponenter. Design av nettverk (nettverk infrastruktur). Trådløse nettverk, design og sikkerhet. Generelt om forskjellige... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: For å kunne gå opp til eksamen må 8 utvalgte øvingsoppgaver være godkjente. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, individuell, 3 timer. Ansvarlig: Arne Bjørn Mikalsen Eksamensdato: 16.12.13 / 19.05.14         Læremål: KUNNSKAPERKandidaten:- kan gjøre rede for de mest brukte teknologiene for lokalnettverk- kan gjøre rede for teknisk oppbygning av nettverk- kan gjøre rede for ulike nettverkskomponenter, deres virkemåte og bruksområde- kan planlegge og vurdere sikkerhet i lokalnettverk FERDIGHETER:Kandidaten:- kan koble til og konfigurere en datamaskin slik at den fungerer i et nettverk med internettoppkobling- kan opprette brukerkontoer, tildele rettigheter, samt administrere nettverk med en ressursdatabase- kan planlegge, implementere og konfigurere et mindre lokalnettverk GENERELL KOMPETANSE:Kandidaten:- har kompetanse til selvstendig både å formidle og å ta i bruk sine kunnskaper og ferdigheter innen emnets tema i en driftssituasjon- kan i en praktisk driftssituasjon, forklare og gjøre bruk av sin kunnskap både innen hvert enkelt tema i faget og på tvers av temaene- kan kommunisere med andre om nettverksløsninger Innhold:Fysiske medier i bruk i lokalnettverk. Nettverkskomponenter. Design av nettverk (nettverk infrastruktur). Trådløse nettverk, design og sikkerhet. Generelt om forskjellige typer nettverksoperativsystem. Introduksjon til Active Directory og eDirectory. Prinsipper for konfigurasjon, installasjon, drift og sikkerhet og driftsfilosofi i lokalnettverk. Introduksjon til virtualisering. Driftsmodeller: Fjerndrift eller ASP (Application Service Provider)Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Drift av lokalnettverk 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
4 dager 45 000 kr
01 Sep
29 Sep
20 Oct
DO180: Red Hat OpenShift Administration I: Operating a Production Cluster [+]
DO180: Red Hat OpenShift Administration I: Operating a Production Cluster [-]
Les mer
Oslo Bergen 4 dager 28 900 kr
27 Oct
27 Oct
10 Nov
Kubernetes Administration (LFS458) [+]
Kubernetes Administration (LFS458) [-]
Les mer
Oslo 5 dager 30 000 kr
22 Sep
22 Sep
17 Nov
Administering Microsoft SQL Server [+]
Administering Microsoft SQL Server [-]
Les mer
Oslo Bergen 5 dager 34 000 kr
01 Sep
22 Sep
06 Oct
CCNA: Implementing and Administering Cisco Solutions [+]
CCNA: Implementing and Administering Cisco Solutions [-]
Les mer
2 dager 16 900 kr
Elasticsearch [+]
Elasticsearch [-]
Les mer
Oslo 4 dager 22 500 kr
03 Nov
03 Nov
DP-300: Administering Microsoft Azure SQL Solutions [+]
DP-300: Administering Microsoft Azure SQL Solutions [-]
Les mer
1 dag 9 500 kr
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer