Alle kategorier
Du har valgt: IT-kurs
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i IT-kurs
 

3 dager 1 500 kr
PowerPoint 2010 er et presentasjonsprogram som brukes når vi skal vise fram data – enten det er tekst, bilder, tall eller tegninger. [+]
PowerPoint 2010 er et presentasjonsprogram som brukes når vi skal vise fram data – enten det er tekst, bilder, tall eller tegninger. Programmet kan brukes til å lage lysark som skrives ut, eller vi kan vise presentasjonen ved hjelp av PC + videokanon. På kurset vil grunnleggende funksjoner vektlegges, men vi vil og se på hvordan en bygger opp og setter sammen en presentasjon. Forkunnskaper: Du må ha kunnskaper tilsvarende PC-begynnerkurs. Brukere av Powerpoint 2007 kan og følge dette kurset. [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Oslo 2 dager 16 900 kr
18 Sep
01 Dec
Modern Application Architecture [+]
Modern Application Architecture [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
Oslo 1 dag 9 500 kr
05 Sep
05 Sep
31 Oct
AZ-900: Microsoft Azure Fundamentals [+]
AZ-900: Microsoft Azure Fundamentals [-]
Les mer
Excel for controllere [+]
Dette kurset er innrettet mot dem som jobber med økonomisk oppfølging i bedriften. Vi går inn på prosessene fra innhenting av data, bearbeidelse av dataene, sammendrag og analyse av dataene, og til sist rapportering av dataene til bedriftens beslutningstagere. Vi bruker en god del tid på Pivot og Power Pivot her, men vi går ikke fullt så langt som i spesialkurset om Pivottabeller. Kurset forutsetter at man er godt kjent i Excel, og vant til å jobbe med litt kompliserte problemstillinger i Excel. Kontroll/gjennomgang av en del sentral funksjonalitet – bl.a. absolutte, relative og blandede referanser. Sammendrag av data fra flere ark i samme eller flere arbeidsbøker, bl.a. gjennomgående summering og tabulering v.hj.a. INDIREKTE-funksjonen. Betingende sammendrag v.hj.a. matriseformler og funksjoner Sentrale funksjoner, bl.a. HVIS, HVISFEIL, FINN.RAD, FINN.KOLONNE, ANTALL.HVIS, etc. Sammendrag av data med Pivottabell Power Pivot Formler Rapportering av data Statiske rapporter Rapporter med interaktivitet, forskjellige teknikker Visualisering av tallene Dashboard Aktuelle teknikker for å lage dashboards Avstemming av to eller flere lister mot hverandre, f.ex. bank Lister – verktøy i Excel som er aktuelle når vi jobber med lister Makroer/VBA – introduksjon til automatisering [-]
Les mer
2 dager 11 900 kr
Power Pivot - Microsoft Excel [+]
Power Pivot - Microsoft Excel [-]
Les mer
6 timer 5 000 kr
Lær å renske store mengder data, ved bruk av sv Pivottabeller for analyse m.m Kurs kan også holdes i Tvedestrand. [+]
Lær å renske store mengder data, slå sammen datalister, hente data fra andre datakilder, betinget formatering, oppslag, tekst og datofunksjoner, bruk av Pivottabeller for analyse m.m Du vil kunne bruke det du lærer på kurset direkte på dine egne data, og få hjelp til utforming. [-]
Les mer
1 dag 7 600 kr
Med Power Automate kan du automatisere forretningsprosesser og handlinger på tvers av organisasjonen, med lite eller ingen koding. Ta farvel med kjedelige, repetitive opp... [+]
Med Power Automate kan du automatisere forretningsprosesser og handlinger på tvers av organisasjonen, med lite eller ingen koding. Ta farvel med kjedelige, repetitive oppgaver og effektiviser hverdagen. Ikke minst er Power Automate ofte en del av Microsoft 365 lisensen du kanskje allerede har. Power Automate er Microsoft sin løsning for automatisering av prosesser, og er en tjeneste som lar deg utvikle flyter på tvers av en rekke applikasjoner og tjenester med lite eller ingen koding. Du kan selvfølgelig få tjenestene i Microsoft 365 til å snakke sammen slik du vil, men det finnes også flere hundre koblinger til andre eksterne tjenester. I tillegg har du naturligvis mulighet til å benytte generelle tilkoblinger, for å hente data fra egne APIer, databaser og tjenester. Power Automate gir muligheter til brukere på tvers av organisasjonen som tidligere i stor grad har vært forbeholdt utviklere.  I løpet av kurset vil deltagere få en hands-on opplevelse av hva Power Automate er, hva det kan brukes til, og hvordan en kan jobbe med det. Kursholderen vil gjøre deltakerne godt kjent med terminologien, demonstrere løsninger og utfordre med øvelser.  Dette er et introduksjonskurs, så det er naturligvis mye vi ikke vil rekke å gå gjennom. Kursleder vil peke deltagerne til gode kilder for videre læring. Det er også mulig å be om bedriftsinterne kurs på videregående nivå, der man kan spesifisere ønsket fokus og spesifikke behov. Disse kan også kjøres som workshops.   TA MED EGEN PC   Kursinnhold Power Automate - det store bildet Ulike flyttyper Bli kjent med arbeidsflaten Datakilder og koblinger Beste praksis for navngivning, utvikling, dokumentering m.m. Bruksområder og viktige begrensninger   [-]
Les mer
Nettkurs 6 timer 549 kr
I dette kurset lærer du å bruke Adobe Premiere Pro på et profesjonelt nivå – og det kreves ingen forkunnskaper for å ta kurset. I begynnelsen av kurset lærer du å opprett... [+]
Bli en mester i videoredigering med Adobe Premiere Pro gjennom dette dyptgående kurset ledet av Espen Faugstad, en erfaren kursholder hos Utdannet.no. Dette kurset krever ingen forkunnskaper og tar deg med fra grunnleggende til avanserte teknikker i Premiere Pro. Det er ideelt for alle som ønsker å lære profesjonell videoredigering, enten for personlig bruk eller for å utvikle karrieren som klipper. Kurset dekker alt fra opprettelse av prosjekter, organisering av filer, redigering av video og lyd, til bruk av effekter, overganger, og fargekorrigering. Du vil også lære å opprette titler, teksting, og bruke animasjon for å gi dine videoer et profesjonelt uttrykk. Ved kursets slutt vil du ha opparbeidet deg all den kunnskapen som trengs for å jobbe som en profesjonell videoredigerer.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Prosjekter Kapittel 3: Importere filer Kapittel 4: Redigere video Kapittel 5: Teknikker Kapittel 6: Redigere lyd Kapittel 7: Effekter og overganger Kapittel 8: Titler, grafikk og teksting Kapittel 9: Animere Kapittel 10: Fargekorrigere Kapittel 11: Eksportere Kapittel 12: Avslutning   Varighet: 6 timer og 5 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettkurs 5 dager 16 500 kr
ISO/IEC 27001 Lead Implementer [+]
ISO/IEC 27001 Lead Implementer [-]
Les mer
1 dag 9 900 kr
Confluence Essentials (server) [+]
Confluence Essentials (server) [-]
Les mer