Alle kategorier
Du har valgt: IT-kurs
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i IT-kurs
 

Virtuelt klasserom 3 dager 9 760 kr
Certificate of Cloud Security Knowledge (CCSK) [+]
  Certificate of Cloud Security Knowledge (CCSK)    CCSK er et bevis på at innehaveren forstår hovedkonseptene i de tre dokumentene CSA bruker som kunnskapsbase for CCSK: CSAs eget rammeverk for beste praksis innen skysikkerhet, «Security Guidance for Critical Areas of Focus in Cloud Computing, v4.0” ENISAs – det europeiske byrået for nettverks- og informasjonssikkerhet – white paper «Cloud Computing: Benefits, Risks and Recommendations for Information Security.» ENISA er EUs ekspertisesenter for internettsikkerhet i Europa. CSA har i en årrekke hatt et tett samarbeid med ENISA. «CSA Cloud Controls Matrix» er et verktøy for å evaluere skytjenester opp mot en lang rekke standarder og rammeverk, for enklere å forstå hvor godt den enkelte skytjeneste er egnet til å understøtte deg og din bedrift i deres forpliktelser. I tillegg til det offisielle materialet, får kursdeltakere fra kraftbransjen tilgang til Berigos egenutviklede materiale som utvider Cloud Controls Matrix til også å omfatte kraftberedskapsforskriften.   [-]
Les mer
Oslo 5 dager 46 000 kr
02 Jun
01 Sep
01 Sep
SFWIPF: Fundamentals of Cisco Firewall Threat Defense and Intrusion Prevention [+]
SFWIPF: Fundamentals of Cisco Firewall Threat Defense and Intrusion Prevention [-]
Les mer
Oslo 2 dager 16 900 kr
23 Jun
23 Jun
25 Sep
SAFe® 6.0 Product Owner/Product Manager [+]
SAFe® Product Owner/Product Manager Certification [-]
Les mer
Nettkurs 2 190 kr
På dette kurset ser vi på hvordan man kan lage egne tittelfelt, hvordan informasjonen vi legger inn i partene kan hentes i tittelfelt og stykkliste. Jo mer man kan automa... [+]
Bruker du den vanlige Inventor-malfilen.idw fortsatt, så trenger du kanskje å gjøre den til din egen. Vil du ha A-A (1:20) plassert fast under et view, istedenfor å alltid flytte den under manuelt? Vil du ha lagt til faste skaleringer, eller holder det med de få som ligger i templaten?Er det tykk linjetykkelse i tittelfelt-rammen?Får du Style Conflict- warning hver gang du starter en ny template?Endrer du alltid noe manuelt i tegningen? Du vil få svar på alle disse spørsmålene i dette kurset!   HOVEDPUNKTER: lage eget tittelfelt sette inn logo i tittelfeltet opprette nytt material-bibliotek, og lage nye materialer lage Custom Properties i part, og få dem inn i stykkliste unngå å få Style Conflict-advarselen hver gang du oppretter en ny fil bli kjent med Styles Editor lagre endringer i Styles, dvs endringer i stykkliste, linjetykkelser, stykk-lister, dimensjoner, farger osv. litt om Project-oppsett [-]
Les mer
Nettkurs 3 timer 3 120 kr
Bli kjent med Revu (Bruksområder, grensesnitt, menyer, verktøy, paneler og profiler) Grunnleggende PDF-håndtering med Revu Markeringsverktøy og ... [+]
Bli kjent med Revu (Bruksområder, grensesnitt, menyer, verktøy, paneler og profiler) Grunnleggende PDF-håndtering med Revu Markeringsverktøy og måleverktøy Innføring i Tool Chest Innføring i Markeringslisten Innføring i Studio [-]
Les mer
Oslo 2 dager 16 900 kr
25 Sep
25 Sep
08 Jan
Modern Service Oriented Architecture [+]
Modern Service Oriented Architecture [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Oslo 5 dager 46 000 kr
21 Jul
13 Oct
13 Oct
SFWIPA: Securing Data Center Networks and VPNs with Cisco Firewall Threat Defense [+]
SFWIPA: Securing Data Center Networks and VPNs with Cisco Secure Firewall Threat Defense [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 34 000 kr
02 Jun
02 Jun
23 Jun
TOGAF® EA Course Combined [+]
TOGAF® EA Course Combined [-]
Les mer
Virtuelt eller personlig Bærum 1 dag 5 950 kr
Mer enn 1,6 millioner fagfolk innenfor design og konstruksjon verden over, bruker Bluebeam Revu til å optimalisere samarbeidet og gjennomføre prosjekter mer effektivt. [+]
Brukergrensesnittet. Opprette profiler med tilpasset oppsett. Verktøy for digital dokumentbehandling, slik som å sette sammen PDF’er, opprette hyperkoblinger, påføre digitale signaturer og stempler. Redigere innhold i PDF-filer Automatisk sammenligning Markeringsverktøy for bruk under designgjennomgang, etc. Bruk av Tool Chest til å spare symboler og tilpassede verktøy for enkel gjenbruk Bruk av markeringslisten til å sette status, kommentere, filtrere og rapportere Kalibrering og måleverktøy. Intro til mengdeberegning Intro til skybasert samarbeid med Studio Projects og Sessions   På kurset lærer du alle de viktigste funksjonene i Revu, noe som gir deg et godt overblikk og utgangspunkt for å jobbe videre med programmet. Du blir i stand til å digitalisere og effektivisere en rekke manuelle arbeidsprosesser, med tidsbesparelse og bedre kvalitet som resultat.   [-]
Les mer
Nettkurs 2 timer 3 120 kr
Mer enn 1,6 millioner fagfolk innenfor design og konstruksjon verden over, bruker Bluebeam Revu til å optimalisere samarbeidet og gjennomføre prosjekter mer effektivt. [+]
På dette online-kurset vil du lære: Opprette symbolbibliotek i Tool Chest. Skalerte symboler Eksisterende symbolbiblioteker (SKANSKA og CADELIT) Måling, mengder og telling Bruk av Markeringslisten til beregning, sporing og rapportering Bygge opp en riggplan Automatisk tegnforklaring Bruk av riggplan på byggeplass   [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
Successful completion of this five-day, instructor-led course should enhance the student’s understanding of configuring and managing Palo Alto Networks Next-Generation Fi... [+]
COURSE OVERVIEW The course includes hands-on experience configuring, managing, and monitoring a firewall in a lab environment TARGET AUDIENCE This course is aimed at Security Engineers, Security Administrators, Security Operations Specialists, Security Analysts, and Support Staff. COURSE OBJECTIVES After you complete this course, you will be able to: Configure and manage the essential features of Palo Alto Networks next-generation firewalls Configure and manage Security and NAT policies to enable approved traffic to and from zones Configure and manage Threat Prevention strategies to block traffic from known and unknown IP addresses, domains, and URLs Monitor network traffic using the interactive web interface and firewall reports COURSE CONTENT 1 - Palo Alto Networks Portfolio and Architecture 2 - Configuring Initial Firewall Settings 3 - Managing Firewall Configurations 4 - Managing Firewall Administrator Accounts 5 - Connecting the Firewall to Production Networks with Security Zones 6 - Creating and Managing Security Policy Rules 7 - Creating and Managing NAT Policy Rules 8 - Controlling Application Usage with App-ID 9 - Blocking Known Threats Using Security Profiles 10 - Blocking Inappropriate Web Traffic with URL Filtering 11 - Blocking Unknown Threats with Wildfire 12 - Controlling Access to Network Resources with User-ID 13 - Using Decryption to Block Threats in Encrypted Traffic 14 - Locating Valuable Information Using Logs and Reports 15 - What's Next in Your Training and Certification Journey Supplemental Materials Securing Endpoints with GlobalProtect Providing Firewall Redundancy with High Availability Connecting Remotes Sites using VPNs Blocking Common Attacks Using Zone Protection   FURTHER INFORMATION Level: Introductory Duration: 5 days Format: Lecture and hands-on labs Platform support: Palo Alto Networks next-generation firewalls running PAN-OS® operating system version 11.0     [-]
Les mer
1 dag 8 500 kr
Dette éndagskurset gir ledere praktisk trening i cybersikkerhetsledelse, med fokus på strategisk IT-planlegging, risikohåndtering, og utvikling av effektive sikkerhetsrut... [+]
I en digital tidsalder hvor samhandling er essensielt for bedrifters suksess, er det kritisk for ledere å oppdatere sin kompetanse. Dette éndagskurset tilbyr praktisk trening og materiale for videre selvstudium, slik at ledere kan møte dagens databehov effektivt. Kurset fokuserer på tre hovedområder for å styrke deltakernes lederkompetanse innen datahåndtering. Det kombinerer teori og praksis for å maksimere læringen. Kurset avholdes på én arbeidsdag, med en strukturert agenda som dekker følgende temaer: Strategiske IT/IS-planer, inkludert organisatoriske strukturer, lederansvar, kompetansekartlegging, IT/IS-policyer, og en gjennomgang av IS-domener. Dette inkluderer også sikkerhetsaspekter som aktiva, nettverk, identitets- og tilgangsstyring, risikostyring, sikkerhetsvurdering og -testing, sikkerhetsoperasjoner, og sikkerhet i utviklingsfasen. Intern gapanalyse, oppbygging av en effektiv Enterprise Information Security Architecture (EISA), definering av opplæringskrav, tilpassede SETA-programmer, trusselvurdering, håndtering av sårbarheter, og en praktisk tilnærming til leverandørrisiko og sikkerhetsvurdering av digitale nettverk. Utvikling av KPI-dashboards, trusselvurdering, kommunikasjonsstrategier, introduksjon til økonomiske nøkkeltall innen informasjonssikkerhet, samt planlegging for forretningskontinuitet og katastrofegjenoppretting. Målsettingen er at hver deltaker etter kurset skal kunne sette SMART-mål for hvert punkt, hvor SMART representerer Spesifikke, Målbare, Oppnåelige, Relevante og Tidsbestemte mål. Kurset gir deltakerne verktøyene de trenger for å forbedre sitt lederskap i en digitalisert verden. Kursholder har jobbet med informasjonssikkerhet for ledende teknologiselskaper de siste 25 årene, og har hjulpet ledere finne farbare veier i krevende situasjoner. Han er sertifisert kvalitetsrevisor ISO 19011 og har utarbeidet sikkerhetsstyringsrutiner for selskaper som følger både enkle og svært strenge lovkrav. Han har en Ph.D. i Cybersecurity Leadership, en MBA innen Finans, Digital transformasjon, Forretningsstrategi, Kommunikasjon og Markedsføring. Han er sertifisert i Advanced Computer Security fra Stanford University og Cyber Forensics and Counterterrorism fra Harvard University. Han har også CISSP fra ISC2, Certified Data Privacy Solution Engineer fra ISACA, og CCSK (Certificate of Cloud Security Knowledge) fra CSA. I tillegg har han gjennomført NHH sitt styreprogram, som utgjør en relevant bakgrunn for dette kurset. Til daglig jobber han som CISO for et selskap med lokasjoner på 24 steder over hele verden. Selskapet må både sikre trygg drift og utvikle programvare og tjenester som må være i drift 24/7. [-]
Les mer
3 dager 20 000 kr
Mastering Microsoft Endpoint Manager (Intune) [+]
Mastering Microsoft Endpoint Manager (Intune) [-]
Les mer
Virtuelt klasserom 5 dager 31 000 kr
This five-day VMware course features intensive hands-on training that focuses on installing, configuring, and managing VMware vSphere 8, which includes VMware ESXi 8 and ... [+]
COURSE OVERVIEW  This course prepares you to administer a vSphere infrastructure for an organization of any size. This course is the foundation for most VMware technologies in the software-defined data center. Product Alignment: VMware ESXi 8.0 VMware vCenter 8.0 TARGET AUDIENCE System administrators System engineers COURSE OBJECTIVES By the end of the course, you should be able to meet the following objectives: Install and configure ESXi hosts Deploy and configure vCenter Use the vSphere Client to create the vCenter inventory and assign roles to vCenter users Create virtual networks using vSphere standard switches and distributed switches Create and configure datastores using storage technologies supported by vSphere Use the vSphere Client to create virtual machines, templates, clones, and snapshots Create content libraries for managing templates and deploying virtual machines Manage virtual machine resource allocation Migrate virtual machines with vSphere vMotion and vSphere Storage vMotion Create and configure a vSphere cluster that is enabled with vSphere High Availability (HA) and vSphere Distributed Resource Scheduler Manage the life cycle of vSphere to keep vCenter, ESXi hosts, and virtual machines up to date COURSE CONTENT 1 Course Introduction Introductions and course logistics Course objectives 2 vSphere and Virtualization Overview Explain basic virtualization concepts Describe how vSphere fits in the software-defined data center and the cloud infrastructure Recognize the user interfaces for accessing vSphere Explain how vSphere interacts with CPUs, memory, networks, storage, and GPUs 3 Installing and Configuring ESXi Install an ESXi host Recognize ESXi user account best practices Configure the ESXi host settings using the DCUI and VMware Host Client 4 Deploying and Configuring vCenter Recognize ESXi hosts communication with vCenter Deploy vCenter Server Appliance Configure vCenter settings Use the vSphere Client to add and manage license keys Create and organize vCenter inventory objects Recognize the rules for applying vCenter permissions View vCenter logs and events 5 Configuring vSphere Networking Configure and view standard switch configurations Configure and view distributed switch configurations Recognize the difference between standard switches and distributed switches Explain how to set networking policies on standard and distributed switches 6 Configuring vSphere Storage Recognize vSphere storage technologies Identify types of vSphere datastores Describe Fibre Channel components and addressing Describe iSCSI components and addressing Configure iSCSI storage on ESXi Create and manage VMFS datastores Configure and manage NFS datastores 7 Deploying Virtual Machines Create and provision VMs Explain the importance of VMware Tools Identify the files that make up a VM Recognize the components of a VM Navigate the vSphere Client and examine VM settings and options Modify VMs by dynamically increasing resources Create VM templates and deploy VMs from them Clone VMs Create customization specifications for guest operating systems Create local, published, and subscribed content libraries Deploy VMs from content libraries Manage multiple versions of VM templates in content libraries 8 Managing Virtual Machines Recognize the types of VM migrations that you can perform within a vCenter instance and across vCenter instances Migrate VMs using vSphere vMotion Describe the role of Enhanced vMotion Compatibility in migrations Migrate VMs using vSphere Storage vMotion Take a snapshot of a VM Manage, consolidate, and delete snapshots Describe CPU and memory concepts in relation to a virtualized environment Describe how VMs compete for resources Define CPU and memory shares, reservations, and limits 9 Deploying and Configuring vSphere Clusters Create a vSphere cluster enabled for vSphere DRS and vSphere HA View information about a vSphere cluster Explain how vSphere DRS determines VM placement on hosts in the cluster Recognize use cases for vSphere DRS settings Monitor a vSphere DRS cluster Describe how vSphere HA responds to various types of failures Identify options for configuring network redundancy in a vSphere HA cluster Recognize vSphere HA design considerations Recognize the use cases for various vSphere HA settings Configure a vSphere HA cluster Recognize when to use vSphere Fault Tolerance 10 Managing the vSphere Lifecycle Enable vSphere Lifecycle Manager in a vSphere cluster Describe features of the vCenter Update Planner Run vCenter upgrade prechecks and interoperability reports Recognize features of vSphere Lifecycle Manager Distinguish between managing hosts using baselines and managing hosts using images Describe how to update hosts using baselines Describe ESXi images Validate ESXi host compliance against a cluster image and update ESXi hosts Update ESXi hosts using vSphere Lifecycle Manager Describe vSphere Lifecycle Manager automatic recommendations Use vSphere Lifecycle Manager to upgrade VMware Tools and VM hardware   [-]
Les mer