Alle kategorier
Du har valgt: IT-kurs
Nullstill
Filter
Ferdig

-

Mer enn 100 treff i IT-kurs
 

3 dager 1 500 kr
PowerPoint 2010 er et presentasjonsprogram som brukes når vi skal vise fram data – enten det er tekst, bilder, tall eller tegninger. [+]
PowerPoint 2010 er et presentasjonsprogram som brukes når vi skal vise fram data – enten det er tekst, bilder, tall eller tegninger. Programmet kan brukes til å lage lysark som skrives ut, eller vi kan vise presentasjonen ved hjelp av PC + videokanon. På kurset vil grunnleggende funksjoner vektlegges, men vi vil og se på hvordan en bygger opp og setter sammen en presentasjon. Forkunnskaper: Du må ha kunnskaper tilsvarende PC-begynnerkurs. Brukere av Powerpoint 2007 kan og følge dette kurset. [-]
Les mer
Nettkurs 12 måneder 11 500 kr
ITIL® er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. [+]
ITIL® 4 Foundation-kurset er en introduksjon til ITIL® 4. Kurset lar kandidater se på IT-tjenestestyring gjennom en ende-til-ende driftsmodell, som inkluderer oppretting, levering og kontinuerlig forbedring av IT-relaterte produkter og tjenester. E-læringskurset inneholder 12 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Foundation e-læring (engelsk) i 12 måneder. ITIL® Foundation online voucher til sertifiseringstest + digital ITIL Foundation bok Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. Sertifiseringen består av: 40 spørsmål Multiple Choice 60 minutter + 15 minutter til rådighet dersom du ikke har engelsk som morsmål For å bestå må du ha minimum 26 riktige (65%) Ingen hjelpemidler tillatt ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Oslo 2 dager 16 900 kr
18 Sep
01 Dec
Modern Application Architecture [+]
Modern Application Architecture [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Create, Deliver and Support dekker «kjernen» i ITIL®, aktiviteter rundt administrasjon av tjenester, og utvider omfanget av ITIL® til å omfatte «oppre... [+]
Kurset fokuserer på integrering av forskjellige verdistrømmer og aktiviteter for å lage, levere og støtte IT-aktiverte produkter og tjenester, samtidig som den dekker støtte for praksis, metoder og verktøy. Kurset gir kandidatene forståelse for tjenestekvalitet og forbedringsmetoder. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Specialist: Create, Deliver and Support e-læring (engelsk) i 12 måneder. ITIL® 4 Specialist: Create, Deliver and Support online voucher til sertifiseringstest.  Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Oslo 3 dager 27 900 kr
01 Oct
01 Oct
03 Dec
Advanced Architecting on AWS [+]
Advanced Architecting on AWS [-]
Les mer
Oslo 5 dager 26 900 kr
24 Nov
24 Nov
Java SE Advanced Techniques (Course II for exam 1Z0-819) [+]
Java SE Advanced Techniques (Course II for exam 1Z0-819) [-]
Les mer
Bedriftsintern 4 dager 32 000 kr
This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a com... [+]
Objectives This course teaches participants the following skills: Design and build data processing systems on Google Cloud Platform Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow Derive business insights from extremely large datasets using Google BigQuery Train, evaluate, and predict using machine learning models using Tensorflow and Cloud ML Leverage unstructured data using Spark and ML APIs on Cloud Dataproc Enable instant insights from streaming data   All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Data Engineering -Explore the role of a data engineer-Analyze data engineering challenges-Intro to BigQuery-Data Lakes and Data Warehouses-Demo: Federated Queries with BigQuery-Transactional Databases vs Data Warehouses-Website Demo: Finding PII in your dataset with DLP API-Partner effectively with other data teams-Manage data access and governance-Build production-ready pipelines-Review GCP customer case study-Lab: Analyzing Data with BigQuery Module 2: Building a Data Lake -Introduction to Data Lakes-Data Storage and ETL options on GCP-Building a Data Lake using Cloud Storage-Optional Demo: Optimizing cost with Google Cloud Storage classes and Cloud Functions-Securing Cloud Storage-Storing All Sorts of Data Types-Video Demo: Running federated queries on Parquet and ORC files in BigQuery-Cloud SQL as a relational Data Lake-Lab: Loading Taxi Data into Cloud SQL Module 3: Building a Data Warehouse -The modern data warehouse-Intro to BigQuery-Demo: Query TB+ of data in seconds-Getting Started-Loading Data-Video Demo: Querying Cloud SQL from BigQuery-Lab: Loading Data into BigQuery-Exploring Schemas-Demo: Exploring BigQuery Public Datasets with SQL using INFORMATION_SCHEMA-Schema Design-Nested and Repeated Fields-Demo: Nested and repeated fields in BigQuery-Lab: Working with JSON and Array data in BigQuery-Optimizing with Partitioning and Clustering-Demo: Partitioned and Clustered Tables in BigQuery-Preview: Transforming Batch and Streaming Data Module 4: Introduction to Building Batch Data Pipelines -EL, ELT, ETL-Quality considerations-How to carry out operations in BigQuery-Demo: ELT to improve data quality in BigQuery-Shortcomings-ETL to solve data quality issues Module 5: Executing Spark on Cloud Dataproc -The Hadoop ecosystem-Running Hadoop on Cloud Dataproc-GCS instead of HDFS-Optimizing Dataproc-Lab: Running Apache Spark jobs on Cloud Dataproc Module 6: Serverless Data Processing with Cloud Dataflow -Cloud Dataflow-Why customers value Dataflow-Dataflow Pipelines-Lab: A Simple Dataflow Pipeline (Python/Java)-Lab: MapReduce in Dataflow (Python/Java)-Lab: Side Inputs (Python/Java)-Dataflow Templates-Dataflow SQL Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer -Building Batch Data Pipelines visually with Cloud Data Fusion-Components-UI Overview-Building a Pipeline-Exploring Data using Wrangler-Lab: Building and executing a pipeline graph in Cloud Data Fusion-Orchestrating work between GCP services with Cloud Composer-Apache Airflow Environment-DAGs and Operators-Workflow Scheduling-Optional Long Demo: Event-triggered Loading of data with Cloud Composer, Cloud Functions, -Cloud Storage, and BigQuery-Monitoring and Logging-Lab: An Introduction to Cloud Composer Module 8: Introduction to Processing Streaming Data Processing Streaming Data Module 9: Serverless Messaging with Cloud Pub/Sub -Cloud Pub/Sub-Lab: Publish Streaming Data into Pub/Sub Module 10: Cloud Dataflow Streaming Features -Cloud Dataflow Streaming Features-Lab: Streaming Data Pipelines Module 11: High-Throughput BigQuery and Bigtable Streaming Features -BigQuery Streaming Features-Lab: Streaming Analytics and Dashboards-Cloud Bigtable-Lab: Streaming Data Pipelines into Bigtable Module 12: Advanced BigQuery Functionality and Performance -Analytic Window Functions-Using With Clauses-GIS Functions-Demo: Mapping Fastest Growing Zip Codes with BigQuery GeoViz-Performance Considerations-Lab: Optimizing your BigQuery Queries for Performance-Optional Lab: Creating Date-Partitioned Tables in BigQuery Module 13: Introduction to Analytics and AI -What is AI?-From Ad-hoc Data Analysis to Data Driven Decisions-Options for ML models on GCP Module 14: Prebuilt ML model APIs for Unstructured Data -Unstructured Data is Hard-ML APIs for Enriching Data-Lab: Using the Natural Language API to Classify Unstructured Text Module 15: Big Data Analytics with Cloud AI Platform Notebooks -What’s a Notebook-BigQuery Magic and Ties to Pandas-Lab: BigQuery in Jupyter Labs on AI Platform Module 16: Production ML Pipelines with Kubeflow -Ways to do ML on GCP-Kubeflow-AI Hub-Lab: Running AI models on Kubeflow Module 17: Custom Model building with SQL in BigQuery ML -BigQuery ML for Quick Model Building-Demo: Train a model with BigQuery ML to predict NYC taxi fares-Supported Models-Lab Option 1: Predict Bike Trip Duration with a Regression Model in BQML-Lab Option 2: Movie Recommendations in BigQuery ML Module 18: Custom Model building with Cloud AutoML -Why Auto ML?-Auto ML Vision-Auto ML NLP-Auto ML Tables [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Virtuelt klasserom 5 dager 33 000 kr
VMware Horizon 8: Deploy and Manage is a five-day combination course of VMware Horizon 8: Skills for Virtual Desktop Management & VMware Horizon 8: Infrastructure Adm... [+]
COURSE OVERVIEW . This training collection gives you the hands-on skills to deliver virtual desktops and applications through a single virtual desktop infrastructure platform. You will build on your skills in configuring and managing VMware Horizon® 8 through a combination of lecture and hands-on labs. You learn how to configure and deploy pools of virtual machines and how to provide a customized desktop environment to end-users. Additionally, you will learn how to install and configure a virtual desktop infrastructure platform. You learn how to install and configure VMware Horizon® Connection Server™, VMware Unified Access Gateway™, how to configure a load balancer for use with Horizon, and how to establish Cloud Pod Architecture.  Product Alignment: VMware Horizon 8 V2006 TARGET AUDIENCE Operators, administrators, and architects for VMware Horizon should enroll in this course. These individuals are responsible for the creation, maintenance, and or delivery of remote and virtual desktop services. Additional duties can include the implementation, support, and administration of an organization's end-user computing infrastructure. COURSE OBJECTIVES By the end of the course, you should be able to meet the following objectives: Recognize the features and benefits of Horizon Use VMware vSphere® to create VMs to be used as desktops for Horizon Create and optimize Windows VMs to create Horizon desktops Install and configure Horizon Agent on Horizon desktop Configure and manage the VMware Horizon® Client™ systems and connect the client to a VMware Horizon desktop Configure, manage, and entitle desktop pools of full VMs Configure, manage, and entitle pools of instant-clone desktops Create and use Remote Desktop Services (RDS) desktops and application pools Monitor the Horizon environment using Horizon Console Dashboard and Horizon Help Desk Tool Identify Horizon Connection Server installation, architecture, and requirements. Describe the authentication and certification options for a Horizon environment Recognize the integration process and benefits of VMware Workspace ONE® Access™ and Horizon 8 Discuss performance and scalability options available in Horizon 8 Describe different security options for the Horizon environment COURSE CONTENT 1  Course Introduction Introductions and course logistics Course objectives 2  Introduction to VMware Horizon Recognize the features and benefits of Horizon Describe the conceptual and logical architecture of Horizon 3  Introduction to Use Case Define a use case for your virtual desktop and application infrastructure Convert customer requirements to use-case attributes 4  vSphere for Horizon 8 Explain basic virtualization concepts Use VMware vSphere® Client™ to access your vCenter Server system and VMware ESXi™ hosts Create, provision, and remove a virtual machine 5  VMware Horizon Desktops Create a Windows and a Linux virtual machine using vSphere Optimize and prepare Windows and Linux virtual machines to set up Horizon desktop VMs 6  VMware Horizon Agents Outline the configuration choices when installing Horizon Agent on Windows and Linux virtual machines Create a gold master for Windows Horizon desktops 7  VMware Horizon Pools Identify the steps to set up a template for desktop pool deployment List the steps to add desktops to the VMware Horizon® Connection Server™ inventory Compare dedicated-assignment and floating-assignment pools Outline the steps to create an automated pool Define user entitlement Explain the hierarchy of global, pool-level, and user-level policies 8  VMware Horizon Client Options Describe the different clients and their benefits Access Horizon desktop using various Horizon clients and HTML Configure integrated printing, USB redirection, and the shared folders option Configure session collaboration and media optimization for Microsoft Teams 9  Creating and Managing Instant-Clone Desktop Pools List the advantages of instant clones Explain the provisioning technology used for instant clone desktop pools Set up an automated pool of instant clones Push updated images to instant clone desktop pools 10  Creating RDS Desktop and Application Pools Explain the difference between an RDS desktop pool and an automated pool Compare and contrast an RDS session host pool, a farm, and an application pool Create an RDS desktop pool and an application pool Access RDS desktops and application from Horizon Client Use the instant clone technology to automate the build-out of RDSH farms Configure load-balancing for RDSHs on a farm 11  Monitoring VMware Horizon Monitor the status of the Horizon components using the Horizon Administrator console dashboard Monitor desktop sessions using the HelpDesk tool 12  Course Introduction Introductions and course logistics Course objectives 13  Horizon Connection Server Recognize VMware Horizon reference architecture Identify the Horizon Connection Server supported features Identify the recommended system requirements for Horizon Connection Server Configure the Horizon event database Outline the steps for the initial configuration of Horizon Connection Server Discuss the ADAM database as a critical component of Horizon Connection Server installation 14  VMware Horizon Authentication and Certificates Compare the authentication options that Horizon Connection Server supports Describe the Smartcard authentication options that Horizon Connection Server supports Outline the steps to create a Horizon administrator and custom roles Describe the roles available in a Horizon environment Explain the role that certificates play for Horizon Connection Server Install and configure certificates for Horizon Connection Server Install and configure True SSO in a Horizon environment 15  Workspace ONE Access & Virtual Application Management Recognize the features and benefits of Workspace ONE Access Recognize the Workspace ONE Access console features Explain identity management in Workspace ONE Access Explain access management in Workspace ONE Access Describe the Workspace ONE Access directory integration Describe the Workspace ONE Access directory integration Deploy virtual applications with Workspace services 16  VMware Horizon Performance and Scalability Describe the purpose of a replica connection server Explain how multiple Horizon Connection Server instances in a pod maintain synchronization Describe the 3D rendering options available in Horizon 8 List the steps to configure graphics cards for use in a Horizon environment Configure a load balancer for use in a Horizon environment Explain Horizon Cloud Pod Architecture LDAP replication and VIPA Explain Horizon Cloud Pod Architecture scalability options 17  Managing VMware Horizon Security Explain concepts relevant to secure Horizon connections Describe how to restrict Horizon connections. Discuss the benefits of using Unified Access Gateway List the two-factor authentication options that are supported by Unified Access Gateway List Unified Access Gateway firewall rules Describe the situation in which you might deploy Unified Access Gateway instances with one, two, or three network interfaces TEST CERTIFICATION VMware Certified Professional – Desktop and Mobility 2020 (VCP-DTM 2020) [-]
Les mer
Nettkurs 5 dager 16 500 kr
ISO/IEC 27001 Lead Implementer [+]
ISO/IEC 27001 Lead Implementer [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
2 dager 16 900 kr
Lean IT Foundation [+]
Lean IT Foundation [-]
Les mer
5 dager 25 500 kr
MS-101: Microsoft 365 Mobility and Security [+]
MS-101: Microsoft 365 Mobility and Security [-]
Les mer